A number of research tasks solved for practice, in which we use advanced machines and equipment available to the department.
CNC machining
Department has several software packages for programming and control of CNC machines such as Siemens Sinumerik, Heidenhain, Mach3, SolidCAM, Siemens NX and many more.
3D printing
3D printing or Rapid Prototyping is one of the most revolutionary technologies in recent years, which is predicted to have a significant position in the industry. This technology has been in our department for several years and we have been pioneers of this technology throughout the faculty.
Forming
The most modern equipment for the research of forming is largely used in teaching process, where students get acquainted not only with theoretical knowledge but also with their practical application.
Practical teaching
We are not just "tough theorists", but we offer you to participate together in solving projects within research teams working in various technological fields.
CERTIFICATION
Solidworks:
Certification exams for students.
CAX SIMULATION
We use several CAx systems in teaching, researching and solving problems for practice.
Department of Technology, Materials and Computer-Aided Technologies is part of the Institute of Technological and Materials Engineering, Faculty of Mechanical Engineering, Technical University in Košice. At present, the teaching area at our department is focused on available conventional and progressive technologies for the production of components in mechanical engineering as well as on the use of CAx technologies in designing and optimizing production processes. The content of the subjects is the theory and technology of machining, sheet metal forming a bulk forming, plastics processing, welding and surface treatment.
The content of subjects includes design of technological processes, production technology, design and construction of the tools, experimental methods in engineering technology, progressive methods of product production, design and construction of the molds for plastic moldings, simulation of melt flow into the mold cavity, mechanization and production automation. Within the application of individual methods and designs in various technological processes, we use CAD/CAM/CAE systems, simulation programs such as PAM-STAMP, SolidCAM, Moldex 3D and others. Within our workplace, we develop or participate in research in the field of forming, welding, machining, plastics processing, surface treatment, thin layers and many others in order to support the industrial environment and ensure its sustainable economic development. We always try to be accommodating and open to possible opportunities for new cooperation. In case of any information, please contact us.
Come to us to studyprogressive study programs.
Technologies, management and innovations in mechanical engineering
Sú to povlaky na báze silikátových skie, ktoré sa aplikujú na ochranu kovových materiálov. Nanášajú sa väčšinou vo forme vodných suspenzií sklovitých fáz (mokré smaltovanie), alebo vo forme prášku. Pri následnom vypaľovaní vznikne súvislý sklovitý povlak, ktorý je prostredníctvom adhéznej medzivrstvy pevne spojený s podkladom.
Základom štruktúry smaltu je sklo, čo je amorfná pevná látka, ktorá vzniká spravidla stuhnutím taveniny bez kryštalizácie. Na rozdiel od kryštalických látok (napr. keramiky) štruktúra skla nemá pravidelné usporiadanie na dlhšie vzdialenosti. Sklo vznikne ochladzovaním východiskovej látky z kvapalného stavu takou rýchlosťou, že sa nestihne vytvoriť pravidelná štruktúrna mriežka.
Sklo sa dá vytvoriť z rôznych anorganických i organických látok:
prvky: S, Se, Te, P
oxidy: B2O3, SiO2, GeO2, P2O5, As2O3 a ďalšie
boridy, kremičitany: Na2B4O7, Na2Si2O5 a iné
iné zlúčeniny: BeF2, AlF3, ZnCl2 a iné.
Druhy smaltových povlakov
Základnou zložkou na prípravu smaltového povlaku je smaltárska frita (brečka). Je to sklovitý anorganický materiál, ktorý vzniká tavením zmesi smaltárskych surovín a prudkým ochladením. Ochladenie sa realizuje odliatím taveniny do vody, alebo medzi valce chladené vodou. Chemické zloženie frity ovplyvňuje väčšinu vlastností smaltového povlaku.
Z hľadiska vrstiev sa smalty delia na:
základné,
krycie,
jednovrstvové
Úlohou základných smaltov je vytvoriť adhéznu medzivrstvu medzi kovom a vrchným smaltovým povlakom. Základný smalt nie je možné použiť ako funkčný povlak. Po nanesení a vypálení základného smaltu sa naňho nanesie krycí smalt a opäť sa vypáli, obr. 1.
Krycí smalt je funkčný povlak, ktorý je nositeľom požadovaných vlastností povlaku. Podľa vzhľadových vlastností krycie smalty môžu byť:
zakalené, biele alebo farebné,
polotransparentné,
transparentné.
Jednovrstvové smalty sú špeciálnym typom základných alebo krycích smaltov, u ktorých je zloženie frity upravené tak, aby pri nanášaní priamo na oceľový plech bola zaistená dostatočná adhézia ku kovu a požadované funkčné vlastnosti zodpovedali požiadavkám na povlak.
Rozdelenie smaltov podľa spôsobu nanášania:
smalty nanášané mokrou cestou, t.j. ponorením výrobku do frity, ktorá sa po nanesení suší a potom vypaľuje,
smalty vo forme práškovej frity nanášané v elektrickom poli vysokého napätia, následne sa bez sušenia sa vypáli,
smalty pre elektroforézne nanášanie, kedy sa vrstva smaltu nanesie galvanickou cestou z vodného roztoku. Adhézia základného smaltu na oceľovom plechu súvisí s tvorbou oxidov železa, ktoré sprostredkujú spojenie medzi sklom a železom.
Technologický postup smaltovania
Predúprava povrchu – odmastenie, morenie.
Nanášanie smaltu:
Máčaním – používa sa pri výrobkoch menších rozmerov prevažne na aplikáciu základného smaltu. Rovnomernosť nanesenia smaltu na podklad závisí od reologických vlastností brečky.
Polievaním – sa používa najčastejšie pri aplikácii krycích smaltov, zväčša u tvarovo náročných výrobkov.
Striekaním – je rozšírená metóda nanášania smaltov predovšetkým na rozmerné a tvarovo náročné výrobky. Táto metóda sa dá dobre mechanizovať, automatizovať a robotizovať. Hlavnou nevýhodou je vysoký odpad smaltu prestrekom.
Elektroforetickým nanášaním – máčanie výrobkov, kedy elektricky nabité častice v smalte vo vodnom prostredí sa pohybujú smerom k povlakovanému výrobku s opačným nábojom. Pracuje bez strát smaltov a dosahuje sa vysoká kvalita povlakov.
Nanášanie v elektrickom poli vysokého napätia – využíva elektrické pole, v ktorom častice smaltu získajú elektrický náboj a pohybujú sa k výrobku s opačným nábojom. Táto metóda sa masívne využíva pre suché i mokré smaltovanie.
Sušenie smaltu sa týka mokrého smaltovania. Pred vypálením sa musí vrstva smaltu vysušiť, aby počas vypaľovania nedochádzalo k masívnemu odparovaniu kvapalnej zložky smaltu a vzniku pľuzgierov. Suší sa pri teplotách 80-100°C v komorách alebo kontinuálnych sušiarňach.
Vypaľovanie smaltu. Suchá vrstva smaltu sa vypaľuje pri teplotách 800-900°C, kedy vznikne sklovitá vrstva s dobrou priľnavosťou ku kovu.
Ukážka práce pri anášaní smaltu za mokra, za sucha, proces vypaľovania smaltu v peci a krivka vypaľovania smaltu sú uvedené na obr. 2-4.
Chyby smaltových povlakov
Typické chyby vznikajúce v smaltových povlakoch sú uvedené v tab. 1.
Vlastnosti smaltových povlakov
Korózne vlastnosti
Vysoká chemická odolnosť patrí medzi základné priaznivé vlastnosti smaltov. Smaltový povlak veľmi dobre odoláva atmosferickej korózii. Výrazne vyššiu koróznu odolnosť majú smaltové povlaky, ktoré obsahujú v sklovitej fáze určitý podiel kryštalickej fázy.
Vysoká chemická odolnosť patrí medzi základné priaznivé vlastnosti smaltov. Smaltový povlak veľmi dobre odoláva atmosferickej korózii. Výrazne vyššiu koróznu odolnosť majú smaltové povlaky, ktoré obsahujú v sklovitej fáze určitý podiel kryštalickej fázy.
Tepelné vlastnosti smaltov
Tepelná vodivosť smaltov pri teplote 313 K je 0,093 – 0,114 W.m-1.K-1 a závisí na množstve pórov v povlaku. Dôležitou vlastnosťou smaltu je jeho tepelná rozťažnosť. Tepelná rozťažnosť smaltu musí byť nižšia ako rozťažnosť podkladového kovu, čím sa vylúčia ťahové napätia v smaltovom povlaku.
Bežné smalty znášajú dlhodobo teploty 400-500°C. Pre špeciálne aplikácie v energetike, leteckej a kozmickej technike sú určené žiaruvzdorné smalty, ktoré odolávajú teplotám 900-1100°C.
Mechanické vlastnosti smaltov
Väzby medzi atómami v smaltoch sú smerového charakteru (iónová, kovalentná). Podiel kryštalickej a sklovitej fázy značne ovplyvňuje mechanické vlastnosti smaltu. Veľký vplyv má aj pórovitosť povlaku. Pevnosť smaltov v ťahu je 70 – 90 MPa a je podstatne nižšia ako pevnosť v tlaku, ktorá je 700-1300 MPa. Tvrdosť smaltov zodpovedá minerálom podľa Mohsovej stupnice 5 - 7. Z tvrdosti smaltu vyplýva jeho značná odolnosť voči abrazívnemu opotrebeniu.
Smalty sú charakteristické nízkou lomovou húževnatosťou. Odolnosť voči mechanickým rázom sa stanovuje ako kinetická energia, pri pôsobení ktorej smalt ešte ostane celistvý.
Podkladové materiály pre smaltovanie a požiadavky na ich vlastnosti
Najčastejšie sa smaltujú:
- oceľové plechy
- sivá liatina
- neželezné kovy (hliník, meď)
Oceľové plechy.
Bežná oceľ na smaltovanie patrí k podeutektoidným nízkouhlíkovým oceliam. Zvláštna pozornosť sa venuje uhlíku, lebo pri vypaľovaní smaltu na fázovom rozhraní kov – smalt prebiehajú reakcie, pri ktorých vznikajú plynné produkty (H2, CO, CO2, CH4), ktoré spôsobujú chyby povlaku. Uhlík tiež znižuje teplotu alotropickej premeny železa, čím dochádza k objemovým zmenám a deformácii výrobkov. Preto by obsah uhlíka v oceli určenej na smaltovanie nemal prekročiť hodnotu 0,1 %, obsah Mn do 0,35 %, Si do 0,1-0,2 %, P do 0,3-0,4 %, S do 0,03-0,04 %, Al do 0,008-0,01 %, Cu 0,01 %. Na smaltovateľnosť ocelí veľmi priaznivo pôsobí nikel.
Vo feritickej štruktúre nízkouhlíkovej ocele by mal byť cementit v globulárnej forme rovnomerne rozložený v základnej matrici.
Sivá liatina.Na smaltovanie sa používa iba sivá liatina s perlitickou matricou, ktorá sa pri vypaľovaní smaltu mení na feritickú štruktúru s rovnomerne rozdeleným lamelárnym grafitom. Sivá liatina musí byť bez pórov, trhlín a ďalších necelistvostí. Po otryskaní musí mať stredne drsný rovnomerný povrch.
Aplikácia organických povlakov na povrch súčiastok patrí medzi najbežnejší spôsob ochrany proti atmosférickým vplyvom. Používajú sa na ochranu kovových výrobkov a konštrukcií pred koróziou, predovšetkým proti účinkom atmosféry a vody. Akosť povlakov zahrňuje ich ochrannú účinnosť a vzhľadovú stálosť. Ochranná účinnosť je výslednicou dvoch vzájomne sprevádzaných funkcií povlakov - bariérového mechanizmu a schopnosti blokovať povrch kovu.
Organické povlaky sú organické látky, ktoré sú v stave polotekutosti alebo tekutosti. Po nanesení a zaschnutí náteru na povrchu súčiastky vzniká neprerušovaný mechanický trvanlivý povlak.
Rozdelenie organických povlakov:
povlaky z náterových látok
povlaky z polymérnych materiálov
povlaky pre dočasnú ochranu
a) Povlaky z náterových látok
Ochranná účinnosť povlakov z náterových látok je ovplyvnená:
akosťou a čistotou základného materiálu,
antikoróznymi vlastnosťami základných náterov,
priepustnosťou povlaku pre ióny, kyslík a vodu,
adhéziou náteru,
Náterová látka je zložená z nasledujúcich základných zložiek:
filmotvorná látka (spojivo, zmäkčovadlo) - nosné médium, ktoré tvorí vlastnú kvapalnú (neprchavú) časť. Charakter filmotvornej látky má vplyv na vlastnosti náteru. Spojivo spoločne s prchavými zložkami tvorí najčastejšie roztok, tzv. základný lak, ktorý by bez pridania pigmentov vytvoril priehľadný transparentný náterový film.
pigmenty, plnidlá a farbivá - malé nerozpustné čiastočky rozptýlené v médiu. Sú to farebné prášky nerozpustné v spojivách a rozpúšťadlách, ktoré dodávajú náterovým látkam farebný odtieň, kryciu schopnosť, svetelnú stálosť a niektoré špeciálne vlastnosti (pasivačnú schopnosť, elektrickú vodivosť a pod.).
prchavé zložky – rozpúšťadlá, riedidlá - upravujú viskozitu filmotvornej látky pre určitý spôsob nanášania. Riedidlá sú obvykle zmesou pravých a nepravých rozpúšťadiel, ktoré slúžia ako prostriedok pre zníženie viskozity náterových látok, aby bola umožnená ich aplikácia zvoleným spôsobom.
ostatné prísady - rôzne aditíva – pomocou nich sa dosahuje lepšia a rýchlejšia dispergácia pigmentov v náterovej látke, zabraňuje sa jej peneniu, obmedzuje sa usadzovaniu pigmentov.
Spôsoby nanášania povlakov z náterových látok
Môže sa realizovať nasledovnými spôsobmi:
Nanášanie štetcom - je to jednoduchá, univerzálna technológia, ktorá umožňuje natieranie predmetov ľubovoľnej veľkosti a tvarov. Je vhodná pri realizácii základných náterov. Straty pri nanášaní sú minimálne, 4-6 %. Nevýhodou je veľká prácnosť a malý výkon na pracovníka, preto sa tento spôsob využíva prevažne v kusovej výrobe. K natieraniu sa používajú rôzne druhy štetcov, pre špeciálne práce tiež jednoúčelové štetce.
Nanášanie valčekom - používa sa pri nanášaní veľkých hladkých plôch. Je to jednoduchý spôsob nanášania, v porovnaní s natieraním štetcom je výkonnosť 2-2,5 krát vyššia. Straty náterovej látky sú malé, 4-6 %, manipulácia veľmi jednoduchá. Valčekom sa nanášajú pomaly zasychajúce náterové hmoty. Prevedením valčeky sú buď so zásobníkom na farbu alebo bez zásobníka.
Nanášanie náterových látok navaľovaním - spôsob mechanického nanášania, kde sústava valcov nanáša náterovú látku zo zásobníka na pohybujúcu sa plochu. Navaľovaním je možné nanášať náterové látky na hladké a ploché výrobky.
Nanášanie náterových látok máčaním - je to spôsob nanášania, pri ktorom sa výrobky ponárajú do nádrže s náterovou látkou, z ktorej sa potom rovnomernou rýchlosťou vynárajú. Pri vynáraní výrobku z nádrže prebytočné množstvo náterovej látky z povrchu výrobku stečie a ostávajúci povlak vytvára vlastný náter.
Nanášanie náterových hmôt striekaním - princíp striekania je vo vytvorení makroskopických čiastočiek - kvapôčok, ktoré sú vrhané na povrch. Následkom tekutého stavu sa kvapôčky po dopade na povrch adhéziou a účinkom povrchového napätia navzájom spojujú a zlievajú, a vytvárajú hladkú, súvislú náterovú vrstvu.
Pneumatické striekanie – použitie tejto technológie je univerzálne, ako v kusovej tak aj v hromadnej výrobe. Je možné ním nanášať všetky druhy náterových hmôt, okrem náterových hmôt pigmentovaných olovom alebo inými toxickými látkami.
Striekacie pištole, používané pri aplikácii tejto technológie, poznáme:
- s hornou nádobkou (spádové), obr.1,
- so spodnou nádobkou (nasávacie), obr.2,
- s tlakovým prívodom náteru z tlakového zásobníka.
Elektrostatické nanášanie náterových látok - podstatou je základný fyzikálny jav - vzájomné priťahovanie častíc s rozdielnym elektrickým nábojom. Jemne rozprášené čiastočky náterovej látky v špeciálnom zariadení, pripojenom na záporný pól generátora vysokého napätia, získavajú záporný náboj a sú unášané po silokrivkách elektrického poľa na uzemnený predmet, obr.3. Odovzdajú svoj náboj a adhéznymi silami zostávajú priľnuté na povrchu predmetu, kde vytvárajú súvislý náterový systém.
Nanášanie náterových hmôt elektroforeticky - princíp spočíva v ponorení vodivého predmetu do kúpeľa so špeciálnou vodouriediteľnou náterovou látkou. Predmet je pripojený na anódu, vaňa alebo pomocné elektródy uložené vo vani na katódu. Pôsobením jednosmerného prúdu sa vytvára medzi výrobkom a pomocnou elektródou elektrické pole. Záporné nabité častice sušiny náterovej látky sa pohybujú po siločiarach elektrického poľa v kúpeli smerom k anóde. Na výrobku sa vylučujú a vytvárajú povlak obr.4.
b) Povlaky z polymérnych materiálov
Povlaky z polymérnych materiálov sú vyrábané vo forme veľmi jemného prášku s priemernou hodnotou veľkosti zrna 40-50 µm. Po aplikácii na predupravený kovový substrát je nevyhnutné nanesený materiál ohriať v peci za účelom dosiahnutia kompaktného povlaku.
Okrem základného systému živice s vytvrdzovacím činidlom (spojivo/tvrdidlo) výslednú práškovú náterovú hmotu tvoria:
- pigmenty - prispievajú k farebným a krycím vlastnostiam práškových náterov,
- plnidlá (výplne) - znižujú cenu východiskových surovín a dávajú aplikáciám ich vlastnosti.
- prísady - napomáhajú užitočným vlastnostiam (rozliv filmu, tvorba textúry a štruktúry).
Ich hlavnými ekologickými výhodami sú:
neobsahujú rozpúšťadlá,
majú 100 % pevný podiel,
pigmenty sú bez nebezpečných ťažkých kovov (olova, kadmia),
minimum odpadového materiálu (prakticky bezodpadová technológia),
ich systém recyklácie a jednoduché zneškodnenie práškového odpadu.
Nanášanie práškových povlakov z polymérnych materiálov na základný materiál je možné realizovať:
naprašovaním - predohriaty predmet sa popráši pomocou práškovou náterovou hmotou, ktorá sa vplyvom tepla nataví a zliatím vytvorí homogénny povlak,
fluidizáciou - používa sa vaňa, obr. 5, ktorá má dvojité dno a vnútorné dno je pórovité. Do priestoru medzi dnami je privádzaný vzduch, ktorý sa šíri do práškového plastu pórovitým dnom. Prášok nadobúda vlastnosti podobné vlastnostiam kvapaliny. Do takto pripraveného prášku sa ponorí kovová súčiastka, ktorá je predhriata, čím vzniká natavenie súvislej vrstvy plastu,
striekaním v elektrostatickom poli - „komaxitovanie“. Práškový povlak je nanášaný striekaním pomocou elektrostatickej pištole v elektrostatickom poli a následne sa vypaľuje.
striekaním v elektrickom poli - v špeciálne upravenej striekacej pištoli dostáva prúdiaci prášok elektrický náboj a po siločiarach elektrického poľa je priťahovaný na uzemnený predmet. Prášok priľne k predmetu vplyvom elektrického náboja, potom môže byť prepravovaný do vypaľovacej komory, kde sa prášok nataví a zleje do súvislej vrstvy.
žiarovým striekaním – používajú sa trysky, kde je obmedzený priamy kontakt plameňa s plastovými časticami a strieka sa pri nižších teplotách nosného prostredia tak, že natavujú sa iba povrchové vrstvy častíc. Celkové dotavenie a zliatie povlaku nastáva účinkom tepla predohriateho predmetu a vplyvom plameňa pištole.
c) Povlaky pre dočasnú ochranu
Dočasná protikorózna ochrana je ochrana proti atmosférickej korózii ako nechránených kovových povrchov výrobkov či zariadení (tzn. povrchov bez trvalej, protikoróznej ochrany náterovými systémami, alebo galvanicky pokovovanými), tak povrchov s trvalými protikoróznymi ochranami po dobu ich skladovania či prepravy od výrobcu k užívateľovi. Dočasná protikorózna ochrana zabezpečuje výrobky pred koróznym poškodením iba po určité obdobie, než dôjde k vlastnému používaniu výrobkov, t.j. v priebehu ich skladovania a prepravy.Kritériom pre výber prostriedkov dočasnej ochrany je požadovaná doba ochrany, ktorá môže byť:
- medzioperačná (do jedného mesiaca),
- krátkodobá (do šiestich mesiacov),
- strednodobá (max. do 2 rokov),
- dlhodobá (až do 10 rokov – špeciálne prípady: vojenská technika, technika pre prípady katastrof a pod.).
Nevyhnutným predpokladom dobrého výsledku realizovaného technologického procesu pred povrchovou úpravou je správna príprava povrchu. Technológie predúprav povrchov zastávajú významné miesto v protikoróznej ochrane strojných súčiastok. Ich cieľom je vyčistiť a kvalitatívne pripraviť povrch tak, aby následná povrchová úprava mohla dosiahnuť požadované vlastnosti a mohla dostatočne plniť svoju funkciu.
Predúpravy povrchu delíme na:
-mechanické
-chemické
Mechanické predúpravy povrchu
Cieľom mechanických predúprav povrchu je:
-odstrániť cudzie i vlastné nečistoty mechanickým narušením ich väzby k podkladu účinkom vhodného nástroja,
-odstrániť prípadné defekty povrchu a štruktúrne nedostatky povrchu,
-zväčšiť skutočnú plochu povrchu,
-aktivovať povrch.
Patria sem nasledujúce metódy predúprav:
-brúsenie
-leštenie
-kefovanie
-omieľanie
-tryskanie
Predúprava povrchu brúsením, leštením , kefovaním
Tieto spôsoby predúprav povrchov sa realizujú ručne alebo strojovo.
Brúsenie – povrch sa obrusuje tvrdým brusivom, odstraňujú sa nerovnosti (okoviny, zvary) a zjednocuje sa kvalita povrchu, obr. 1.
Leštenie – nasleduje po brúsení, zlepšuje drsnosť a lesk povrchu, môže sa aplikovať aj v rámci dokončovacích úprav (preleštenie povlakov).
Kefovanie – mechanické odieranie povrchu, ktorým nie je možné dosiahnuť 100 % čistotu povrchu, neodstraňuje mastnotu. Nástrojom je kefa.
Predúprava povrchu omieľaním
Omieľanie je to hromadná predúprava povrchu, pri ktorej sa dávka výrobkov, zväčša odliatkov, výliskov menších rozmerov vzájomne otĺka v bubne, ktorý vykonáva rotačný, vibračný alebo kombinovaný pohyb, obr.2. Môže prebiehať za sucha, alebo s pridaním kvapalín s odmasťovacím účinkom alebo s prídavkom inhibítorov korózie. V prípade potreby sa do bubna pridávajú omieľacie telieska z rôznych materiálov (piesok, oceľový granulát, kamienky, korundové telieska, plastové telieska plnené abrazivom a pod.) a rôzneho tvaru.
Predúprava povrchu tryskaním
Tryskanie je produktívny spôsob čistenia, odstraňovanie okovín a koróznych splodín pri súčasnom vytvorení vhodnej mikrogeometrie a spevnení povrchu. Nástrojom je tryskací prostriedok – tvorený rôzne veľkými časticami z materiálov rôzneho charakteru, tvaru guľatého – granulát, obr. 3 alebo ostrohranného – drvina, obr. 4. Ostrohranný tryskací prostriedok je určený najmä pre úber materiálu, guľatý na spevňovanie a odokoviňovanie materiálu.
Spôsoby tryskania a tryskacie zariadena
Podľa spôsobu unášania tryskacieho prostriedku rozdeľujeme tryskacie zariadenia na:
mechanické tryskacie zariadenia – s metacími kolesami, kde na vnútorný koniec rýchlo rotujúcej lopatky kolesa sa privádza tryskací prostriedok. Následne je lopatkou unášaný a vplyvom odstredivej sily pri rotácii prúdi k vonkajšiemu koncu lopatky, kde ju opúšťa značnou rýchlosťou a dopadá na otryskávaný povrch, obr. 5,
pneumatické tryskacie zariadenia – využívajú tlakový spád vzduchu, ktorý prechodom cez trysku expanduje a získava vysokú výstupnú rýchlosť, obr. 5,
hydraulické tryskacie zariadenia - pri ktorých sa v hydraulickom tryskacom zariadení okrem zŕn tryskacieho prostriedku do tryskacieho injektora natlakuje tekutá zložka a to buď brúsna alebo leštiaca pasta, ktorá vylepšuje účinok tryskania. Vystriekaná suspenzia steká do lapača a po vyčistení sa opäť vracia do technologického procesu,
netradičné tryskacie zariadenia.
b) Chemické predúpravy povrchu
Cieľom chemicko-fyzikálnych predúprav povrchu je:
- odstrániť cudzie i vlastné nečistoty chemickým, resp. chemicko-fyzikálnym narušením ich väzby k podkladu účinkom vhodného nástroja,
- odstrániť prípadné defekty povrchu a štruktúrne nedostatky povrchu,
- zväčšiť skutočnú plochu povrchu,
- aktivovať povrch.
Patria sem nasledujúce metódy predúprav:
- odmasťovanie
- morenie
- dekapovanie
- odhrdzovanie
Odmasťovanie – je odstránenie cudzích nečistôt priľnutých k povrchu (tuky, oleje, vosky, chladiace kvapaliny, vazelíny), a to:
vodnými prostriedkami – alkalické, tenzidové alebo emulzné prípravky emulgujú alebo dispergujú nečistoty, organické mastnoty sa zmydelňujú, anorganické mastnoty sa emulgujú (nie je vhodné pre členité diely a odliatky),
organickými prostriedkami - jednoduché a účinné odmastenie rozpustením mastnôt pomocou benzínu, petroleja, nevhodné pre vlhké plochy, potreba dodržiavať prísne bezpečnostné opatrenia, len ručná práca
elektrochemické odmasťovanie – spĺňa vysoké požiadavky na čistotu, nevýhodou je riziko navoskovania výrobku v katodickej časti, výrobok sa zapája ako anóda alebo katóda, alebo reverzne – najprv ako katóda, potom ako anóda, čím sa zníži riziko navoskovania,
odmasťovanie parou - kombinácia účinku vysokej teploty a odmasťujúceho prípravku
Z hľadiska spôsobu nanášania odmasťovadla sa odmasťovanie môže realizovať:
-ponorom - najjednoduchší a najlacnejší spôsob. Využíva sa hlavne pri miernom znečistení povrchu.
-postrekom - pri stredne silnom znečistení,
-odmasťovanie ultrazvukové - je nevyhnutné využiť ultrazvukovú energiu, obr.6,
-elektrolytické odmasťovanie - odstraňuje z povrchu posledné zvyšky mastnôt a iných nečistôt. Je vhodný tam, kde sa na čistotu povrchu kladú veľké požiadavky. Ide o odmasťovanie zintenzívnené prechodom prúdu, založené na princípe elektrolýzy.
Kombinované spôsoby - spojujú výhody jednotlivých odmasťovacích prostriedkov a spôsobov.
Morenie – slúži na odstránenie oxidov z povrchu rozpúšťaním (odlupovaním a odleptávaním) v kyselinách. Najčastejšie v HCl, H2SO4, HNO3.
Dekapovanie – slúži na odstraňovanie tenkých oxidických vrstiev a aktiváciu povrchu pred vlastnou povrchovou úpravou.
Odhrdzovanie – slúži na čistenie predmetov, ktoré skorodovali počas používania alebo skladovania. Používa sa tiež ako predúprava pred vlastnou povrchovou úpravou alebo v rámci renovácií a obnovy povrchovej úpravy.
On 04.03.2025, an event called Katedrovica was held for our students from the PPSV Ing. 1st and 2nd year study programme. We would like to take this opportunity to thank you for the awesome atmosphere and great fun.
From 02 to 05.11.2024 the KSIT 2024 conference was held in Tály, Slovakia. It brought together experts from metallurgy, metallurgy and industry from Slovakia, the Czech Republic, Poland and Romania. The event was also a celebration of the thirtieth anniversary of the scientific journal Acta Metallurgica Slovaca.
Ing. Samuel Vilkovský took part in a one-month Erasmus+ Traineeship at the Faculty of Mechanical Engineering, University of Ljubljana, Slovenia, which broadened his knowledge with additional academic opportunities. Within the framework of the above-mentioned stay at this faculty, he also focused on future scientific cooperation with this university in the field of forming under the guidance of prof. Pepelnjak. He extended his previous knowledge in the field of simulation of forming processes by the possibilities of using Neural Network and Random Forest methods, which contributed to a new insight into new modern research techniques and methodologies. His further experience from his stay at the University of Ljubljana Mr. Ing. Vilkovský can be read by clicking on the link below.
On 21.05.2024 company Sumitomo DEMAG representatives visited the Institute of Technological and Materials Engineering at the Faculty of Mechanical Engineering of TUKE. This company presented cutting-edge solutions in the field of plastic injection moulding technology, including a real demonstration on an injection moulding machine. The presentation was intended for employees of the Institute of Technological and Materials Engineering, as well as for students and representatives of various companies from KE and the surrounding area. With her expertise in the field of plastic injection moulding, she pointed out the latest trends, tools as well as functions and control panels showing the entire injection moulding process. One of the many features was an introduction to the so-called activeMeltControl function, which adapts the injection moulding process to changes in material (including regranulate), automatic pressure adjustment, or correction of moulding weight fluctuations.
On 14.02.2024 Volvo Cars visited the Institute of Technological and Materials Engineering at the Faculty of Mechanical Engineering, TUKE. They were interested in study programs oriented on the issue of automotive production, scientific and research activities and possibilities of further cooperation. There was a discussion about the possibility of applying our graduates within the company. A number of study programmes of our faculty offer a wide range of graduates who can find employment in the newly created company in Valaliky Industrial park. In the coming period, representatives of Volvo Cars will visit the laboratories and workplaces of the Faculty of Mechanical Engineering.
On 27.06.2023 an excursion was held for the students of the PPSV Ing. studies in the company RF Elements in their development and production centre at the city of Humenne.
As part of the CEEPUS scholarship program, KTMaPPV students completed a study stay at Politechnika Svietokrzyska in KIelce, Poland. As part of their two-week stay, they had the opportunity to take interesting lectures, visit the laser technology center, several laboratories, but also get to know the city and its surroundings in free time. As part of the summer school, they also visited the 25th year of the exhibition PLASTPOL
The students of the 2nd year of engineering studies of the PPSV study program completed a study stay at the University Politechnika Świętokrzyska in Kielce, Poland, within the CEEPUS scholarship program. During the two-week stay, they had the opportunity to attend interesting lectures, visit the laser technology center, but also get to know the city and its surroundings in their free time.
An international scientific conference will take place in Herľany from 15 to 17 September 2019. All interested parties from Slovakia and abroad are invited. More information can be found at:
On March 20, 2019, an event entitled ,,Open Day" was held in the University Library of the Technical University in Košice, which was attended by the general scientific and lay public as well as students and teachers of secondary schools. As part of the Open Day event, employees of the technologies and materials informed about the possibilities of studying the Bachelors study program Technology, Management nad Innovation of Mechanical Engineering as well as about the knowledge that students can acquire and then apply in practice after studying other study programs at KSTaM.
On February 25-26, 2019, a management meeting and workshop was held at KSTaM within the international project NEWEX entitled „Research and development of a new generation of machines for processing composite and nanocomposite materials“, where the design and production of a new innovative extruder is concerned. The implementation of this project supports real cooperation between industry and education, which is of key importance for the European research development strategy.
STEEL Park
Kreatívna fabrika At our department under the leadership of prof. Ing. Emila Spišáka, CSc. and Ing. Juraja Hudáka, CSc. as well as the other educators, employees and students and the guarantor of the project U.S. Steel Košice was gradually prepared and realized one of the exhibits - the production of a toy car from sheet steel.
On March 19, 2015, a competition of FME TU students in CNC machine programming took place. It was prepared by the Department of Computer Aided Technologies and the Department of Mechanical Engineering Technologies and Materials under the auspices of the Dean of the Faculty of Mechanical Engineering Dr.h.c. mult. prof. Ing. Františka TREBUŇU, CSc.
Conference
On 7 and 9 October 2015, the international scientific conference Pro-tech-ma 2015 and Surface Engineering 2015 took place, organized by the Department of Mechanical Engineering Technologies and Materials in cooperation with the universities of the Rzeszow University of Technology and Polish University of Technology. The conference took place at the Hotel Hubert in Gerlachov in the High Tatras.
EUR-ACE European Accreditation of Engineering Programmes
With EUR-ACE accreditation, the university receives the EUR-ACE label, which allows it to be among the leading European universities and colleges that have already received this label. It gives students the assurance that by completing a EUR-ACE accredited degree, they will meet the most exacting criteria set for graduates in European business practice. The EUR-ACE label guarantees that the holder meets demanding criteria, not only in terms of organisation but also in terms of the content and outcomes of the study programme.
Calendar
No event in the calendar
July 2025
Mon
Tue
Wed
Thu
Fri
Sat
Sun
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
Welding school
"Ideas alone have little worth. The value of innovation lies in its practical implementation"
Werner von Siemens (in letter to his brother Carl, 1865)
Mäsiarska 74 040 01 Košice - Old town Slovak Republic
Contact
Department of Technology, Materials and Computer-Aided Technologies Institute of Technology and Materials Engineering Faculty of Mechanical Engineering Technical University of Košice
Head of the department and director of the institute: prof. Ing. Emil Spišák, CSc. phone: 055/602 3502 e-mail: This email address is being protected from spambots. You need JavaScript enabled to view it.
Secretariat: Ing.Eva Krupárová phone: 055/602 3502 e-mail: This email address is being protected from spambots. You need JavaScript enabled to view it.