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Preface

Calculus is a branch of mathematics that introduces concepts and tools to
describe and analyze functions. Although some parts of calculus were known
to the ancient Greeks, Egyptians and Chinese, the modern version of calculus
was largely developed in the 17th century, independently by Issac Newton and
Gottfried Leibniz. Calculus is not only an important branch of mathematics in
its own right but also provides a rigorous mathematical foundation of physics,
engineering and many other branches of science.

In our book Mathematics 1 we introduced differential calculus topics including
limits, derivatives and indefinite integrals. In the present book we introduce
the general concepts of integral calculus, look at the major applications and
state and use the Fundamental Theorem of Calculus.

We begin this book with a short review of integration techniques for finding
definite integrals. Following this we go through a series of geometric applica-
tions of definite integrals and further techniques for evaluating definite integrals
and improper integrals. Then we begin the study of functions of more than
one variable and extend the concepts of single variable calculus to functions of
several variables. Ordinary differential equations are presented in Chapter 5.
Finally, we focus on linear differential systems.

The dominant feature of this book is formalism. Definitions and theorems are
stated precisely, and several results are proved at a high level of rigor. Each
section begins with a theoretical introduction, includes definitions of the basic
notions followed by propositions and a brief summary of rules or properties.
Solved examples are used to explain the details of the calculations. Most
sections end with several exercises. These will test students’ understanding
of the material that was covered in the section. The exercises are limited
in number so that it is feasible to work through all of them. They have been
carefully chosen so that a student who does most of them will be well prepared
for applications of calculus in later courses.

We are indebted to the reviewers Mirka Miller and Joe Ryan both from the
University of Newcastle, Australia, and Francesc A. Muntaner-Batle from Uni-

iii



versitat Internacional de Cataluña, Barcelona, Spain. We would like to thank
them for their comments and suggestions which led to significant revisions.

We are especially grateful to Marcela Lascsáková from Technical University in
Košice for her unfailing support, keen eyes and attention to detail.

We welcome comments and suggestions from students using this book. In par-
ticular, we are interested in hearing about any typographical, mathematical,
or formatting errors found in this book.

Martin Bača
Andrea Feňovč́ıková
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CHAPTER 1

The Definite Integral

1.1 Definition of the definite integral

Let f be a function defined on an interval 〈a, b〉 and let f(x) ≥ 0, for all

x ∈ 〈a, b〉.

We will assume that f is bounded on 〈a, b〉, that is, we assume that there exist

numbers m and M such that m ≤ f(x) ≤M , for all x ∈ 〈a, b〉.

We call a set D = {x0, x1, . . . , xn} a partition of the interval 〈a, b〉 if

a = x0 < x1 < x2 < · · · < xn = b.

Such a partition D divides 〈a, b〉 into n intervals, 〈xi−1, xi〉, of lengths

∆xi = xi − xi−1,

where i = 1, 2, . . . , n.

For each such interval 〈xi−1, xi〉, let Mi be the smallest number such that

f(x) ≤ Mi, for all x ∈ 〈xi−1, xi〉 and let mi be the largest number such that

f(x) ≥ mi, for all x ∈ 〈xi−1, xi〉. Note that if f is continuous on 〈a, b〉 then Mi

is the maximum value of f on 〈xi−1, xi〉 and mi is the minimum value of f on

〈xi−1, xi〉.

9



10 CHAPTER 1. The Definite Integral

Note that the rectangle with base 〈xi−1, xi〉 and height Mi is called a circum-

scribed rectangle and the rectangle with base 〈xi−1, xi〉 and height mi is called

an inscribed rectangle, see Figures 1.1 and 1.2.

x

y

a = x0 x1 x2 x3 x4 x5 x6 x7 = b

f(x)

Figure 1.1: Circumscribed and inscribed rectangles for n = 7.

xi−1 xi xi+1

mi

mi+1

Mi

Mi+1

f(x)

Figure 1.2: Maximum and minimum values on intervals.



CHAPTER 1. The Definite Integral 11

Let

USf (D) = M1∆x1 + M2∆x2 + · · ·+ Mn∆xn =
n

∑

i=1

Mi∆xi (1.1)

be the upper sum of f with respect to the partition D, and

LSf (D) = m1∆x1 + m2∆x2 + · · ·+ mn∆xn =
n

∑

i=1

mi∆xi (1.2)

be the lower sum of f with respect to the partition D. Note that we always

have

LSf (D) ≤ USf (D). (1.3)

According to Figure 1.1, we can see that USf (D) is the sum of the areas of

the circumscribed rectangles for the partition D and LSf (D) is the sum of

the areas of the inscribed rectangles for the partition D.

If we choose values c1, c2, . . . , cn so that ci is in the ith interval of the partition

(that is, xi−1 ≤ ci ≤ xi) then

mi ≤ f(ci) ≤Mi, (1.4)

for i = 1, 2, . . . , n, and so

LSf (D) =
n

∑

i=1

mi∆xi ≤
n

∑

i=1

f(ci)∆xi ≤
n

∑

i=1

Mi∆xi = USf (D). (1.5)

Definition 1.1.1. (Integrable function, Definite integral)

A function f is integrable on an interval 〈a, b〉 if there exists a unique number

I such that

LSf (D) ≤ I ≤ USf (D), (1.6)

for all partitions D of 〈a, b〉. If f is integrable on 〈a, b〉, we call I the definite

integral of f on 〈a, b〉, which we denote

I =

∫ b

a

f(x) dx. (1.7)
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The sum

n
∑

i=1

f(ci)∆xi (1.8)

is called a Riemann sum. If we consider

∆x =
b− a

n
as the length of the intervals 〈xi−1, xi〉, i = 1, 2, . . . , n, then

lim
n→∞

∆x = 0.

For an integrable function f with points c1, c2, . . . , cn, where xi−1 ≤ ci ≤ xi for

all intervals, we have

lim
n→∞

n
∑

i=1

f(ci)∆xi =

∫ b

a

f(x) dx. (1.9)

The basic notation for the definite integral is

I =

∫ b

a

f(x) dx.

• The numbers a and b are called the limits of integration. The number a

is the lower limit of integration and b is the upper limit of integration.

• The limits of integration form an interval 〈a, b〉. This interval is referred

to as the interval of integration.

• The function f(x) is called the integrand.

• The symbol dx, the differential of x, plays the same role here as it did

for the indefinite integral. The symbol dx tells us that x is the variable

of integration.

There is a correspondence between the definite integral and the area of a region

in the plane.
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Definition 1.1.2. (Area of region)

Given an integrable function f with f(x) ≥ 0, for all x in an interval 〈a, b〉,
let R be the region in the plane bounded above by the curve y = f(x), below by

the interval 〈a, b〉 on the x-axis, and on the sides by the vertical lines x = a

and x = b. Then we define the area A of region R to be

A =

∫ b

a

f(x) dx. (1.10)

Figure 1.3 depicts the region beneath the graph of a function f over the interval

〈a, b〉.

a b xx

y

y = f(x)

Figure 1.3: Region beneath f over 〈a, b〉.

Because of the complicated nature of the definition of the definite integral, one

may wonder whether it is possible for any function to be integrable. We have

the following theorem.

Theorem 1.1.1.

Any continuous function on an interval 〈a, b〉 is integrable on 〈a, b〉.

Figure 1.4 shows a function f defined as follows:

f(x) =







x2, if x < 1,

3− x, if x ≥ 1.
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Since f is not continuous on 〈0, 2〉, its integrability does not follow from Theo-

rem 1.1.1. However, the function f is integrable on 〈0, 2〉 because it is a piece-

wise continuous function.

x

y

0 1 2 3

1

2

y1 = x2

y2 = 3− x

Figure 1.4: Example of the piecewise continuous function.

Definition 1.1.3. (Piecewise continuous function)

A function f is said to be piecewise continuous on an interval 〈a, b〉 if there is

a partition D = {x0, x1, . . . , xn} of 〈a, b〉 such that f is continuous on each open

interval (xi−1, xi), i = 1, 2, . . . , n, has limits from both the right and the left at

each partition point xi, i = 1, 2, . . . , n− 1, and has a right-hand limit at a and

a left-hand limit at b.

Theorem 1.1.2.

If f is piecewise continuous function on 〈a, b〉 then f is integrable on 〈a, b〉.

1.2 Properties of the definite integral

In this section we give a survey of the general properties of the definite integral.

These properties are very useful in the calculation of the integral.
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Theorem 1.2.1. (Homogeneous property)

Suppose the function f is integrable over the interval 〈a, b〉 and k is an arbitrary

constant. Then kf is integrable over the interval 〈a, b〉 and

∫ b

a

kf(x) dx = k

∫ b

a

f(x) dx. (1.11)

Theorem 1.2.2. (Additive of integrand)

Suppose the functions f and g are integrable over the interval 〈a, b〉. Then

f + g is integrable over the interval 〈a, b〉 and

∫ b

a

(

f(x) + g(x)

)

dx =

∫ b

a

f(x) dx +

∫ b

a

g(x) dx. (1.12)

Of course, a similar statement is true for the difference of two functions.

Suppose f is integrable on 〈a, b〉 and c is a point with a < c < b. It may be

shown that f is integrable on both 〈a, c〉 and 〈c, b〉. Moreover, using partitions

which include c, we may write a Riemann sum for f over 〈a, b〉 as the sum

of two Riemann sums, the first over the interval 〈a, c〉 and the second over

the interval 〈c, b〉. Thus the total area from a to b
(

∫ b

a
f(x) dx

)

is the area

from a to c
(∫ c

a
f(x) dx

)

combined with the area from c to b
(

∫ b

c
f(x) dx

)

, see

Figure 1.5.

a bc xx

y

y = f(x)

Figure 1.5: Illustration of the property (1.13).
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Theorem 1.2.3. (Additivity of limits)

Suppose the function f is integrable over the interval 〈a, b〉 and let c ∈ (a, b).

Then
∫ b

a

f(x) dx =

∫ c

a

f(x) dx +

∫ b

c

f(x) dx. (1.13)

Theorem 1.2.4. (Non-negativity of the integral)

Suppose the function f is integrable over the interval 〈a, b〉 and that f(x) ≥ 0

over 〈a, b〉. Then
∫ b

a

f(x) dx ≥ 0. (1.14)

Now, suppose f and g are both integrable on 〈a, b〉 and g(x) ≤ f(x) for all x

in 〈a, b〉. It follows that for any given partition D, the upper sum of f will be

greater than or equal to the corresponding upper sum of g. Since the definite

integral is the largest number less than or equal to the value of any upper sum,

the following theorem results.

Theorem 1.2.5. (Monotone property of the integral)

Suppose the functions f and g are integrable over the interval 〈a, b〉 and

g(x) ≤ f(x), for all x ∈ 〈a, b〉. Then

∫ b

a

g(x) dx ≤
∫ b

a

f(x) dx. (1.15)

Theorem 1.2.6. (Absolute integrability)

Suppose the function f is integrable over the interval 〈a, b〉. Then |f | is inte-

grable over the interval 〈a, b〉 too, and

∣

∣

∣

∣

∫ b

a

f(x) dx

∣

∣

∣

∣

≤
∫ b

a

|f(x)| dx. (1.16)

Occasionally, we come across the problem of integrating over an interval of

zero length. The following definition takes care of such a case.
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Definition 1.2.1. (Integral over interval of zero length)

For any number belonging to the domain of f ,

∫ a

a

f(x) dx = 0.

When we interchange the upper and lower limits of integration, we change

the sign of the integral.

Definition 1.2.2. (Reverse order of integration)

Suppose the function f is integrable over the interval 〈a, b〉. Then

∫ b

a

f(x) dx = −
∫ a

b

f(x) dx. (1.17)

1.3 The fundamental theorem of calculus

The Fundamental Theorem of Calculus is a powerful weapon for evaluating

definite integrals.

Theorem 1.3.1. (Fundamental Theorem of Calculus)

Let f be integrable over the interval 〈a, b〉. Let F be continuous on 〈a, b〉 and

a primitive function of f on (a, b). Then

∫ b

a

f(x) dx = [F (x)]ba = F (b)− F (a). (1.18)

Proof. Suppose f is integrable over the interval 〈a, b〉 and F is continuous

there and F is a primitive function of f on (a, b). In particular,

F ′(x) = f(x),

for all x in (a, b).

Let D = {x0, x1, x2, . . . , xn} be a partition of 〈a, b〉 and let

∆xi = xi − xi−1,
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for i = 1, 2, . . . , n. Now

F (b)− F (a) = F (xn)− F (x0) = F (xn) + (F (xn−1)− F (xn−1))

+(F (xn−2)− F (xn−2)) + · · ·+ (F (x1)− F (x1))− F (x0)

= (F (xn)− F (xn−1)) + (F (xn−1)− F (xn−2)) + · · ·+ (F (x1)− F (x0))

=
n

∑

i=1

(F (xi)− F (xi−1)).

By the Mean Value Theorem, for every i = 1, 2, . . . , n, there exists a point ci

in the interval 〈xi−1, xi〉 such that

F ′(ci) =
F (xi)− F (xi−1)

xi − xi−1

. (1.19)

Since F ′(ci) = f(ci) and xi − xi−1 = ∆xi, from (1.19) it follows that

F (xi)− F (xi−1) = f(ci)∆xi. (1.20)

Thus, using (1.20) we have

F (b)− F (a) =
n

∑

i=1

f(ci)∆xi. (1.21)

Hence F (b)−F (a) is equal to the value of a Riemann sum using the partition

D, and so must lie between the upper and lower sums for D. That is, with

respect to (1.5) we have that for any partition D

LSf (D) ≤ F (b)− F (a) ≤ USf (D).

But since f is integrable, there is only one number that has this property,

namely, I =
∫ b

a
f(x) dx, see (1.6). In other words, we have shown that

∫ b

a

f(x) dx = F (b)− F (a).

�
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Example 1.3.1. Find the area under the parabola y = x2 + 1 and above

the interval 〈−1, 2〉 on the x-axis.

Solution The function f(x) = x2+1 is continuous and positive on the interval

〈−1, 2〉. Since F (x) = x3

3
+ x is a primitive function of f(x) = x2 + 1 then,

with respect to (1.18), we have

∫

2

−1

(

x2 + 1
)

dx =

[

x3

3
+ x

]2

−1

=

(

23

3
+ 2

)

−
(

(−1)3

3
+ (−1)

)

= 6.

Thus the area under the parabola y = x2 + 1 and above the interval 〈−1, 2〉
on the x-axis is exactly 6 square units. See Figure 1.6. •

x

y

0−1 2

f(x) = x2 + 1

Figure 1.6: Region beneath the graph of f(x) = x2+1 over the interval 〈−1, 2〉.

Example 1.3.2. Evaluate
∫ e2

e

1

x ln x
dx.

Solution Since F (x) = ln | ln x| is a primitive function of f(x) = 1

x ln x
, we

have

∫ e2

e

1

x ln x
dx = [ln | ln x|]e2

e = ln | ln e2| − ln | ln e| = ln 2− ln 1 = ln 2.

•
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Example 1.3.3. Evaluate
∫

1

0

2x

x2 + 1
dx.

Solution Since F (x) = ln(x2 + 1) is a primitive function of f(x) = 2x
x2+1

, we

have
∫

1

0

2x

x2 + 1
dx =

[

ln(x2 + 1)
]1

0
= ln 2− ln 1 = ln 2.

•
Example 1.3.4. Evaluate

∫ π

2

0

sin 2x

1 + cos2 x
dx.

Solution We can see that the derivative of the denominator of the integrand

gives the numerator with negative sign. This means

(

1 + cos2 x
)′

= −2 sin x cos x.

Thus the primitive function of f(x) = sin 2x
1+cos2 x

is F (x) = − ln (1 + cos2 x).

Using (1.18) gives

∫ π

2

0

sin 2x

1 + cos2 x
dx = −

[

ln
(

1 + cos2 x
)]

π

2

0

= − ln
(

1 + cos2
π

2

)

+ ln
(

1 + cos2 0
)

= − ln 1 + ln 2 = ln 2.

•

The value ln 2 seems to be a general result for every definite integral. The next

example shows that this is not true.

Example 1.3.5. Evaluate

∫ 1

2

0

1√
1− x2

dx.

Solution The function arcsin x is the primitive function of the given integrand

on (−1, 1) because (arcsin x)′ = 1√
1−x2

.


