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Preface

The goal of this text is to help students learn to use calculus intelligently
for solving a wide variety of mathematical and physical problems. This book
Mathematics 3 covers the third semester course of mathematics for foreign
students at Technical University of Košice.

In the first book Mathematics 1 we introduced differential calculus topics in-
cluding limits, derivatives and indefinite integrals. In the second book Mathe-
matics 2 we introduced the general concepts of integral calculus and gave
techniques and applications of integration.

We begin the present book with double integrals including transformations
and applications. Following this we go through triple integrals and through
transformations in triple integrals. The next two chapters are devoted to line
and surface integrals and there are presented Green’s, Gauss’s and Stokes’
theorems. Infinite series are studied in Chapter 5. Finally, we focus on Fourier
series.

This book contains numerous examples and illustrations to help make concepts
clear. Solved examples are used to explain the details of the calculations.
Most sections end with carefully chosen exercises which give students simple
opportunity to test their understanding and apply their skills to real-world
problems.

We would like to thank the reviewers Petr Kovář from Technical University
of Ostrava, Czech Republic, and Yuqing Lin and Francesc A. Muntaner-Batle
both from the University of Newcastle, Australia. We would like to thank
them for their comments and suggestions which led to significant revisions.

The examples and exercises have been solved and checked independently by
several people. Nevertheless we welcome comments and suggestions from stu-
dents using this book. In particular, we are interested in hearing about any
typographical, mathematical, or formatting errors found in this book.

Authors
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CHAPTER 1

Double Integrals

1.1 Definition of double integral

Let f(x, y) be a function of two variables whose domain is a region R. A double

integral is an integral of the function f(x, y) over the region R. In this section,

we define double integrals and show tools for their evaluation.

If for every point [x, y] ∈ R is f(x, y) > 0, then the double integral is equal to

the volume of the solid under the surface z = f(x, y) and above the xy-plane

restricted to in the region of integration R, see Figure 1.1.

If the region R is a rectangle 〈a, b〉 × 〈c, d〉, i.e.,

R = {[x, y] ∈ E2 : a ≤ x ≤ b, c ≤ y ≤ d},

we can subdivide the interval 〈a, b〉 into small intervals using a set of numbers

{x0, x1, . . . , xm} so that

a = x0 < x1 < x2 < · · · < xm−1 < xm = b.

Similarly, a set of numbers {y0, y1, . . . , yn} is said to be a partition of the

interval 〈c, d〉 along the y-axis, if

c = y0 < y1 < y2 < · · · < yn−1 < yn = d.

9
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y

z

x

R

z = f(x, y)

Figure 1.1: Notion of double integral.

If [x∗i , y
∗
j ] is some point in the rectangle 〈xi−1, xi〉 × 〈yj−1, yj〉 and

∆xi = xi − xi−1, ∆yj = yj − yj−1 then the Riemann sum of a function f(x, y)

over the partition of 〈a, b〉 × 〈c, d〉, see Figure 1.2, is

m
∑

i=1

n
∑

j=1

f(x∗i , y
∗
j )∆xi∆yj. (1.1)

Then we define the double integral of a function f(x, y) in the rectangular

region 〈a, b〉 × 〈c, d〉 as the limit of the Riemann sum as the maximum values

of ∆xi and ∆yj approach zero:

∫∫

〈a,b〉×〈c,d〉

f(x, y) dx dy = lim
max∆xi→0
max∆yj→0

m
∑

i=1

n
∑

j=1

f(x∗i , y
∗
j )∆xi∆yj. (1.2)

If the limit in (1.2) exists we say that the function f(x, y) is integrable on the

region R. The following theorems tell us how to compute a double integral

over a rectangle.
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y

z

x

c = y0 yj−1 yj d = yn

a = x0

xi−1

xi

b = xm

[x∗i , y
∗

j ]

z = f(x, y)

f(x∗i , y
∗

j )

Figure 1.2: Riemann sum of a function f(x, y) over the partition of 〈a, b〉 ×
〈c, d〉.

Theorem 1.1.1. (Fubini’s Theorem)

Let the function f be integrable on a rectangle R = 〈a, b〉 × 〈c, d〉. Then

∫∫

R

f(x, y) dx dy =

b
∫

a

d
∫

c

f(x, y) dx dy =

d
∫

c

b
∫

a

f(x, y) dy dx.
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Theorem 1.1.2.

If the integrand f(x, y) is integrable on a rectangle R = 〈a, b〉 × 〈c, d〉 and

can be written as a multiplication of two functions each of one variable

f(x, y) = f1(x) · f2(y), then

∫∫

R

f(x, y) dx dy =





b
∫

a

f1(x) dx



 ·





d
∫

c

f2(y) dy



 . (1.3)

Example 1.1.1. Compute the double integral
∫∫

R
6xy2 dx dy over the rect-

angle R = 〈2, 4〉 × 〈1, 2〉.

Solution In this case we will integrate with respect to y first. Since the dy

is the inner differential, the inner integral needs to have y limits. When we

compute the inner integral, we typically keep the outer integral around as

follows,

∫∫

R

6xy2 dx dy =

4
∫

2

[

2xy3
]2

1
dx =

4
∫

2

14x dx.

Remember that we treat x as a constant when doing the first integral and we

do not do any integration by x yet. Now, we have a regular integral in one

variable and we finish the computation as follows:

∫∫

R

6xy2 dx dy =

4
∫

2

14x dx =
[

7x2
]4

2
= 84.

•

If region R is an arbitrary closed region then we have the following theorem.

Theorem 1.1.3.

If f is a continuous function on the closed region R, then
∫∫

R
f(x, y) dx dy

exists.
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1.2 Properties of double integrals

In this section we give a survey of general properties of a double integral. These

properties are very useful during the calculation of double integrals.

Theorem 1.2.1. (Homogeneous property)

Suppose that the function f is integrable over a closed region R and k is an ar-

bitrary constant. Then kf is integrable over the region R and

∫∫

R

kf(x, y) dx dy = k

∫∫

R

f(x, y) dx dy. (1.4)

Theorem 1.2.2. (Additive property)

Suppose that the functions f and g are integrable over a closed region R. Then

f + g is integrable over the closed region R and

∫∫

R

(

f(x, y) + g(x, y)
)

dx dy =

∫∫

R

f(x, y) dx dy +

∫∫

R

g(x, y) dx dy. (1.5)

x

y

S

R

Figure 1.3: Two non-overlapping regions.

Of course, a similar statement is true for the difference of two functions. Con-

sider two closed regions R and S. Figure 1.3 illustrates the location of two

non-overlapping regions assumed in Theorem 1.2.3 and Figure 1.4 shows a re-
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lationship between regions S and R assumed in Theorem 1.2.4.

x

y

R

S

Figure 1.4: Region S is a subregion of R.

Theorem 1.2.3. (Additivity)

Let R and S be non-overlapping closed regions and assume that a function f

is integrable over the region R ∪ S. Then

∫∫

R∪S

f(x, y) dx dy =

∫∫

R

f(x, y) dx dy +

∫∫

S

f(x, y) dx dy. (1.6)

Theorem 1.2.4.

Suppose that function f is integrable over closed region R and suppose that S

is a closed subregion of R. Then

∫∫

S

f(x, y) dx dy ≤
∫∫

R

f(x, y) dx dy. (1.7)

Theorem 1.2.5. (Non-negativity of the double integral)

Suppose that function f is integrable over closed region R and let f(x, y) ≥ 0

over R. Then
∫∫

R

f(x, y) dx dy ≥ 0. (1.8)
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Theorem 1.2.6. (Monotone property of the double integral)

Suppose that functions f and g are integrable over closed region R with

g(x, y) ≤ f(x, y), for all [x, y] ∈ R. Then

∫∫

R

g(x, y) dx dy ≤
∫∫

R

f(x, y) dx dy. (1.9)

Theorem 1.2.7. (Median of the double integral)

If f is a continuous function on closed region R and A(R) is the area of R,

then there exists at least one point [xi, yj] ∈ R such that

∫∫

R

f(x, y) dx dy = f(xi, yj) · A(R). (1.10)

1.3 Iterated integrals

In Section 1.1 we looked at double integrals over rectangular regions. However,

most of the regions are not rectangular so we need now to look at the following

double integral
∫∫

D

f(x, y) dx dy,

where D is an arbitrary region. There are two types of regions that need to

be considered.

Definition 1.3.1. (Normal domain with respect to the x-axis)

The normal domain with respect to the x-axis is bounded by lines x = a and

x = b, where a < b, and continuous curves y = ϕ1(x) and y = ϕ2(x), where

ϕ1(x) ≤ ϕ2(x) for all x ∈ 〈a, b〉.

Let D be a region lying between the curves of ϕ1 and ϕ2 over an interval 〈a, b〉,
see Figure 1.5. Thus

D = {[x, y] ∈ E2 : a ≤ x ≤ b, ϕ1(x) ≤ y ≤ ϕ2(x)}. (1.11)
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Then the area between the curves of ϕ1(x) and ϕ2(x) from a to b is

A(D) =

b
∫

a

(

ϕ2(x)− ϕ1(x)
)

dx. (1.12)

a b xx

y

ϕ2(x)

ϕ1(x)

D

Figure 1.5: Definition of a region D.

Definition 1.3.2. (Normal domain with respect to the y-axis)

The normal domain with respect to the y-axis is bounded by lines y = c and

y = d, where c < d, and continuous curves x = ψ1(y) and x = ψ2(y), where

ψ1(y) ≤ ψ2(y) for all y ∈ 〈c, d〉.

Let G be a region lying between the curves of ψ1 and ψ2 over an interval 〈c, d〉,
see Figure 1.6. Thus

G = {[x, y] ∈ E2 : c ≤ y ≤ d, ψ1(y) ≤ x ≤ ψ2(y)}. (1.13)

Then the area between the curves of ψ1(y) and ψ2(y) from c to d is

A(G) =

d
∫

c

(

ψ2(y)− ψ1(y)
)

dy. (1.14)

The following theorems are stronger form of Fubini’s Theorem and state how

to express a double integral in terms of iterated integrals.
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c

d

x

y
ψ2(y)ψ1(y)

G

Figure 1.6: Definition of a region G.

Theorem 1.3.1.

Let f(x, y) be a continuous function on the closed region D = {[x, y] ∈ E2 :

a ≤ x ≤ b, ϕ1(x) ≤ y ≤ ϕ2(x)} and let ϕ1(x), ϕ2(x) be continuous functions

defined on the interval 〈a, b〉 with ϕ1(x) ≤ ϕ2(x), for all x in 〈a, b〉. Then

∫∫

D

f(x, y) dx dy =

b
∫

a







ϕ2(x)
∫

ϕ1(x)

f(x, y) dy






dx. (1.15)

Theorem 1.3.2.

Let f(x, y) be a continuous function on the closed region G = {[x, y] ∈ E2 :

c ≤ y ≤ d, ψ1(y) ≤ x ≤ ψ2(y)} and let ψ1(y), ψ2(y) be continuous functions

defined on the interval 〈c, d〉 with ψ1(y) ≤ x ≤ ψ2(y), for all y in 〈c, d〉. Then

∫∫

G

f(x, y) dx dy =

d
∫

c







ψ2(y)
∫

ψ1(y)

f(x, y) dx






dy. (1.16)

Let’s take a look at some examples of double integrals over general regions.
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Example 1.3.1. Evaluate the integral
∫∫

D

(x2 + y) dx dy,

where D = {[x, y] ∈ E2 : 0 ≤ x ≤ 1, x2 ≤ y ≤ √x}.

Solution According to Theorem 1.3.1 we get

∫∫

D

(x2 + y) dx dy =

1
∫

0

√
x

∫

x2

(x2 + y) dx dy =

1
∫

0







√
x

∫

x2

(x2 + y) dy






dx

=

1
∫

0

[

x2y +
y2

2

]

√
x

x2

dx =

1
∫

0

(

x2
√
x+

x

2
− 3x4

2

)

dx

=

[

2
√
x7

7
+
x2

4
− 3x5

10

]1

0

=
33

140
.

•

Example 1.3.2. Evaluate the integral
∫∫

G

x2

y2
dx dy,

where G = {[x, y] ∈ E2 : 1 ≤ y ≤ 2, 1/y ≤ x ≤ y}.

Solution According to Theorem 1.3.2 we get

∫∫

G

x2

y2
dx dy =

2
∫

1

y
∫

1

y

x2

y2
dy dx =

2
∫

1









y
∫

1

y

x2

y2
dx









dy =
1

3

2
∫

1

[

x3

y2

]y

1

y

dy

=
1

3

2
∫

1

(

y − 1

y5

)

dy =
1

3

[

y2

2
+

1

4y4

]2

1

=
27

64
.

•

The region D = {[x, y] ∈ E2 : 0 ≤ x ≤ 1, x2 ≤ y ≤ √
x} considered in

Example 1.3.1 is depicted in Figure 1.7 and the region G = {[x, y] ∈ E2 :

1 ≤ y ≤ 2, 1/y ≤ x ≤ y} considered in Example 1.3.2 is illustrated in Figure

1.8.
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x

y

1

y =
√

x

y = −
√

x

y = x
2

Figure 1.7: The region D = {[x, y] ∈ E2 : 0 ≤ x ≤ 1, x2 ≤ y ≤ √x}.

2

1

x

y

y = x

y =
1

x

Figure 1.8: G = {[x, y] ∈ E2 : 1 ≤ y ≤ 2, 1
y
≤ x ≤ y}.

Example 1.3.3. Evaluate the integral
∫∫

D
x2y dx dy over the regionD bounded

above by the line y = 6− x and below by the curve y = 5/x.
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Solution To find the region D, we need to know the bounds where the region

begins and ends. Therefore, we sketch the curve and line together in the same

graph, see Figure 1.9.

1 5 6

6

x

y

y =
5

x

y = 6− x

Figure 1.9: The region bounded by the line y = 6− x and the curve y = 5/x.

To find the points of intersection of two curves, we set

5

x
= 6− x

and solve for x

5

x
− 6 + x = 0,

5− 6x+ x2

x
= 0,

(x− 5)(x− 1) = 0.

Hence x = 1 and x = 5 are the x-coordinates of two intersections. Since

5

x
≤ 6− x


