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1 INTRODUCTION 
 

Gravel distribution by inland waterway transportation includes three main phases: loading 

of gravel by a suction dredger into barges, transport of gravel to the ports or unloading 

locations, and unloading of gravel by a handling facility that usually consists of pontoon 

mounted crane and belt conveyor. Because of high costs, a number of handling facilities is 

usually relatively small, and requires successive relocation of handling equipment between 

different unloading locations. Accordingly, providing efficient and cost effective service of 

loaded river barges needs appropriate allocation plan for handling equipment, which means 

defining sequence of unloading locations that should be served by each handling device. 

The problem may be introduced in following way. For a given collection of barges 

unloading tasks find a set of assignments to minimize the sum of the service times including 

waiting for service and handling devices transfer times. The problem of this type may be 
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considered as dynamic handling devices allocation problem, where task occurrence times are 

distributed over a planning horizon, or as static problem, where all tasks are already present in 

the system at the beginning of a planning horizon. In this paper we studied generalization of 

the problem, i.e. dynamic handling device allocation problem (DHDAP) where all devices 

have different relevant characteristics. 

The objective of this problem is minimization of barges service times so that they can 

spend as more as possible time in transporting goods, i.e. by making profit to an owner.  

Remaining of the paper is organized as follows. In the section 2 we give problem formulation 

and relevant literature review. In section 3 we present variable neighborhood search algorithm 

for solving DHDAP. Framework for generating test instances is presented in section 4, while 

brief comments on obtained results and concluding remarks are presented in section 5. 

 

2 PROBLEM FORMULATION 
 

 In case of homogeneous set of m handling devices  mV ,...,2,1 , DHDAP is formulated 

on a complete, directed and asymmetric graph ),( ENG  , where  1,...,2,1,0  nN  is a set of 

nodes in which nodes 0 and n+1 correspond to the depot and  1,0\  nNP  to the set of 

unloading tasks. The set   NjijiE  ,:,  is set of edges. Weight ijt 
 is associated to each 

edge   Njiji  ,:,  representing traveling time of a device over the edge. To each node Pi  

there is a time window associated with it. However, in the case of DHDAP time windows 

impose only the earliest time of beginning of unloading service, defined by barge occurrences. 

Therefore, there is only left hand side of time window of task i, represented with parameter 

ie , while the right side ( il ) is supposed to be infinite. Additionally, unloading service time, 

is , is also associated to each node Pi . The objective of homogeneous DHDAP is to 

minimize the sum of time all nodes wait until the end of service by identifying set of m device 

routes such that all nodes from P are visited exactly once by exactly one route while 

respecting time window constraints and service times. Device routes start at node 0 and end at 

node n+1. Parameters s and e for set of nodes  1,0 n  are equal to zero.  

However, since unloading devices differ in both traveling and unloading speed, previously 

formulated problem must be generalized by considering heterogeneous set of m devices 
 mV ,...,2,1 . Therefore, heterogeneous DHDAP is formulated on a graph G where set of 

edges E  is replaced with set   NjiVvjivE  ,,:,,  meaning that between each pairs of 

nodes   Njiji  ,, there are m different edges exclusively dedicated to each member of V. 

Accordingly, weight 
v
ijt

, representing traveling time of a device v between nodes i and j, is 

associated to each edge in E, as well as unloading service time of device v, 
v
is , is associated to 

each node in N. The objective of the heterogeneous DHDAP is the same as in the 

homogeneous case. 

Due to cumulative nature of objective function, DHDAP is very similar to the set of 

problems known in literature by names traveling repairmen problem (TRP), delivery man 

problem, school bus routing problem, minimum latency problem and cumulative capacitated 

vehicle routing problem. 

As for the literature on DHDAP, there are only a few papers regarding gravel unloading 

devices control. In the [1] authors formulated the Handling Devices Allocation Problem – 

HDAP. They, considered static case of HDAP (SHDAP) and presented two approaches for its 

mathematical formulation. First one is based on three-dimensional assignment problem, while 
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the second one is based on similarities of SHDAP and the Static Berth Allocation Problem.. 

Additionally, authors presented a three step heuristic algorithm to solving SHDAP 

(CLASORD – CLustering ASsignment ORDering). [2] and [3] formulated dynamic version 

of the problem (DHDAP) and gave two mathematical formulation of the problem. 

When similar problems, such as class of the TRP problems, are respected, situation about 

previous researches is not much better. Namely, the literature on mTRPTW, which is the 

closest problem to the heterogeneous DHDAP, is very limited, as well. To the best of our 

knowledge the only paper regarding mTRPTW is the one from [4] in which the author solved 

the problem of operational control of automated guided vehicles (AGV) fleet for different 

conditions of internal transportation system, such as off-line and on-line control, dwell point 

strategies, demand intensities, etc. In case of off-line control author proposed mTRPTW 

mixed integer linear programming (MILP) model for homogeneous fleet of AGVs. Since 

mTRPTW, as generalization of TRPTW, is NP-hard proposed model is used only for small 

problem instances. For medium and large instances author proposed insertion based 

algorithm. 

Literature regarding TRPTW is also very limited and consists of two papers. In the first 

one, [5], author presented polynomial algorithms or NP-completeness for some special cases 

of TSPTW and TRPTW. Author showed that in case of TRPTW in which only tasks’ release 

times are imposed, which is the case of the problem considered in this paper, problem is 

strongly NP-complete even if number of nodes is bounded to one. In the second paper, [6], 

authors give arc flow and sequential assignment based MILP formulations of the TRPTW. In 

a case of the second formulation in which all time windows are open, except the one in a 

depot, authors performed polyhedral study. For solving TRPTW authors presented both, exact 

and heuristic algorithms.  

From previously said it is obvious that HDAP belongs to a class of complex optimization 

problems whose effective implementation in solving real system problems implies 

development of efficient (meta)heuristic algorithms. Therefore, in this paper we present 

relatively new solution procedure based on systematic changes of solution’s neighborhood 

structures and compare it’s performances to two other solution procedures. 

 

3 VARIABLE NEIGHBORHOOD SEARCH METAHEURISTICS 

 

VNS is relatively new [7,8,9] metaheuristic framework for developing heuristics 

algorithms that has intensively been used in solving variety of combinatorial optimization 

problems. It is based on straightforward facts that local optimum of one neighborhood 

structure does not have to be local optimum of some other neighborhood structure, that global 

optimum is local optimum of all neighborhood structures, and that for many problems local 

optima of one or several neighborhood structures are close to each other. Therefore, due to the 

expectation of finding improved solution in a neighborhood structure of the current solution 

x , VNS is based on systematical exploration of maxk neighborhood structures of the current 

solution ( max,...,2,1),( kkxNk  ).  

Neighborhood structures are changed sequentially until better solution is found. 

Afterwards, 1N structure is explored with respect to the new best solution. However, 

exploration of kth structure is realized in one of three different ways: deterministic, stochastic 

and both deterministic and stochastic. In the deterministic case, exploration of )(xN k is 

executed either until the local optimum of the structure is found or only until the first better 

solution is reached. The former case is called best improvement strategy, while the latter one 

is called first improvement strategy. This type of neighborhood structure search algorithms is 
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called variable neighborhood descent (VND) algorithm and its first improvement variant, 

implemented in this research, is shown in form of a pseudo code as algorithm 1. 

Stochastic exploration of )(xN k implies selection of random point ( x ) within kN and 

comparison with current best solution ( x ). If x  is not better than x , neighborhood structure 

is changed ( 1 kk ) and new random point, now within )(1 xN k is selected. This type of 

VNS algorithm is called reduced VNS (RVNS) because, oppositely from VND, it does not 

perform deep exploration of neighborhood structures around x . This drawback is eliminated 

by including VND as a part of the algorithm. Combined algorithm is known as a basic VNS 

and represents mixture of deterministic and stochastic exploration of neighborhood structures. 

Framework of basic VNS used in this paper is shown in form of pseudo code as algorithm 2. 

Algorithm 1: First improvement Variable Neighborhood Descent 

algorithm 

Initialization Select set of neighborhood structures, lN  ),...,2,1( maxll  , to 

be used in search; find an initial solution x . 

Set 1l  

Repeat following steps until maxll   

(a)Exploration of neighborhood. If oNl  , select next neighbor, x  , 

from ))(( xNxN ll  ; else, set 1 ll  

(b)Move or not. If x  is better then x , set xx  , 1l ; else set 
 xNN ll  \  

 

VNS performs extensive exploration of solution space regions by executing VND 

algorithm, while trap of falling into local optima is avoided by implementing RVNS 

algorithm, i.e. by random selection of regions within neighborhood structure of currently the 

best solution. Procedure of random selection of regions is called shaking, or perturbation. It is 

important to emphasize that neighborhood structures used in VND algorithm and shaking 

procedure does not have to be identical and that final solution is optimum with respect to 

neighborhood structures from both VND and shaking procedures. 

Another important aspect of implementing VNS is neighborhood structure relation. 

Namely, although from VNS pseudo code it can be concluded that neighborhood structures 

are independent, sequences of nested neighborhood structures are frequently implemented. 

Such structures imply that each structure in sequence is subset of the following structure, i.e. 

max21 kNNN  . 

Algorithm 2: Basic Variable Neighborhood Search algorithm 

Initialization Select set of neighborhood structures, kN ),...,2,1( maxkk  , to 

be used in search; execute RVNS for obtaining an initial solution x ; 

choose stopping condition 

Set 1k  

Repeat following steps until maxkk   

(a)Shaking. Select a solution x  from neighborhood structure of x , 
)(xNx k  

(b)Local search. Apply some local search (VND) with xas initial 

solution. Obtained local optimum is marked as x  . 

(c)Move or not. If x  is better then x , set xx  , 1k ; else set 

1 kk  
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Like in many other problems that imply use of multiple task executers, DHDAP solutions 

are represented as ordered sets of task indices - vH  served at m devices where 

stands



Vv

v nH . vH denotes cardinality of set Hv , i.e. number of tasks served by device v. 

Objective function of a solution f(x) is calculated according to the expression (1). 

  
 


m

v
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i
hh

v

v
i

v
i

rDxf
1 1
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Where notation is the same as in section 2 and v
ih  refers to the index of the task that is on 

the ith position in set vH . For example, if 3H = {3,5,2,6} then 3
1h =3, 3

2h =5, 3
3h =2 etc. Task 

finish times, v
ih

D , are calculated according to (2) 
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 (2) 

Due to their wide use, a lot of solution transformations forming neighborhood structures 

can be found in a literature. All of neighborhood structures we use in our VNS are already 

known structures whose implementation is improved by adjustment to mTRPTW. VND 

algorithm we use in this paper explores three independent neighborhood structures generated 

by heuristics found in[10]: 

Insertion heuristics includes execution of Or-opt moves on each device’s set of tasks with 

aim to improve solution by reordering current sequence of execution. Reordering implies 

removal of one, two and three adjacent tasks from existing execution sequence and their 

insertion to all possible positions in remaining task sequence, excluding their original 

position. All possible moves of this type, performed for each device separately, form 

neighborhood structure 1N  . Figure 1a presents example in which tasks j and k served after 

task i prior to insertion move are inserted between tasks j and m afterwards insertion task. 

Swap heuristics (Figure 1b), like in case of 1N  , keeps the same structure of the solution 

regarding number of tasks served on each device. Swap move tries to find improved solution 

by exchanging a task served on its device with tasks served on all other devices. Execution of 

this move for each task on all devices generates neighborhood structure 2N  . An example of 

swap move is presented on figure 3b where it can be seen that after swap move tasks k and l 

exchanged positions in sequences on which they ware served before swap move. 

Relocation heuristics (Fig 1c) forms neighborhood structure 3N  by changing existing 

structure of currently the best solution. Namely, relocation move tries to improve solution by 

removing a task form a device where it is served and inserting it at all possible locations on 

other devices. Structure 3N  is formed after relocation move is executed for all tasks in the 

best solution. An example of relocation move is presented on figure 3c where task l, served 

between tasks j and n, is moved to be served by another device between tasks k and m. 

For shaking procedure we use two sets of nested neighborhoods:  

Random swap heuristics chooses next region for exploration by random selection of two 

tasks for interchange. This procedure is expansion of swap heuristics from VND since set of 

tasks for interchange with selected task is not limited to tasks served by other devices. Nested 

neighborhood structures kN  ( 1
max,...,2,1 kk  ) are formed by successive implementation of 

random swap algorithm.  
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Worst relocation heuristics selects next regions for local search in two steps. In the first 

step, a task with the largest waiting time till the end of service (worst task) is removed from 

existing solution. Afterwards, from set of all possible insertions, excluding insertion to the 

previous location, removed task is inserted into position with the lowest objective function 

value. Like in case of random swap heuristics nested neighborhood structures 

kN  ( 2
max

1
max

1
max

1
max ,...,2,1 kkkkk  ) are formed by successive execution of worst relocation 

heuristics.  

 

 

Fig. 1 Neighborhood structures used in VND algorithm 

Numbers of nested structures, 1
maxk  and 2

maxk , as in case of MSVND algorithm, are 

determined from results of pilot studies resulting in best performances for values of 

parameters equal to eight. 

 

4 COMPUTATIONAL EXPERIMENTS 

 

Set of 45 randomly generated instances is formed on example of Belgrade service area 

(figure 2) consisting of 20 gravel unloading locations. We considered cases with equal chance 

of task arrivals at each location and with uniform distribution of task inter arrival times over 

planning horizon. Each task implies need for unloading 1000 tons of gravel. Devices used for 

gravel unloading belong to one of three different classes whose relevant characteristics are 

presented in table 1.  Following series of device classes {I, II, III, II, III, II, III, I, II, III} 

corresponds to classes of devices making fleets of 2, 5 and 10 devices used for executing 

unloading tasks. It is supposed that all devices are available for service at the beginning of 

planning horizon. 

 

Tab.1 Characteristics of unloading device classes 

Class 

Transfer 

speed 

[km/h] 

Unloadingcapacity 

[t/h] 

I 6 100 

II 5 150 

III 4 200 

Beside VNS algorithm, efficiency of Insertion heuristics [4] is tested as the only heuristic 

algorithm used so far for solving mTRPTW. Additionally, we tried to obtain optimal solutions 
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of small size problem instances (10 tasks) by using branch and bound (B&B) algorithm 

implemented in CPLEX 12.2 with limits of 512MB of RAM for tree structure and one hour 

for running time. However, due to high complexity of the problem only one optimal solution, 

bolded in table 2, is achieved.  

 

Fig.2 Spatial distribution of gravel unloading location in the case of 
Belgrade, Serbia 

 

All test runs are executed on Windows XP OS powerd by AMD Phenom II 2.61 GHz 

processor with 1GB of RAM while all coddings are done in Python 2.5. 

 

Tab.2 Results of instances containing 10 unloading tasks 

 B&B VNS Insertion 

m inst objective Δobj [%] T [s] Δobj [%] T [s] Δobj [%] T [s] 

2 

1 195.3823 0.0% 3008.44 0.0% 0.80 0.000% <0.01 

2 189.0527 0.0% 3201.25 0.0% 0.78 1.397% <0.01 

3 202.1763 0.0% 3058.92 0.0% 0.78 0.542% <0.01 

4 196.2127 0.0% 3375.86 0.0% 0.81 0.356% <0.01 

5 181.267 0.0% 3689.45 0.0% 0.87 7.457% <0.01 

Average 0.0% 3266.78 0.0% 0.81 1.95% <0.01 

5 

1 64.17417 0.0% 1585.16 0.0% 0.92 6.042% 0.02 

2 62.10733 0.0% 1487.70 0.0% 0.87 10.896% <0.01 

3 65.61867 3.08% 2011.20 0.0% 0.86 5.547% <0.01 

4 66.52917 0.0% 1821.41 0.79% 0.88 13.649% <0.01 

5 59.65999 0.0% 1280.09 0.0% 1.00 5.008% <0.01 

Average 0.62% 1637.11 0.16% 0.90 8.23% 0.004 

10 

1 54.62417 0.388% 1908.63 0.0% 1.15 1.624% <0.01 

2 54.43017 1.492% 158.20 0.0% 1.04 1.174% <0.01 

3 53.30733 0.0% 6075.91 1.61% 1.02 6.893% <0.01 

4 54.48233 0.0% 3936.48 0.0% 1.08 1.285% 0.02 

5 51.7057 0.0% 3026.53 1.8% 1.21 1.801% 0.02 

Average 0.38% 3021.15 0.68% 1.10 2.56% 0.01 
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In cases of B&B and Insertion algorithms instances are solved once, while in the case of 

the VNS, due to stochastic nature of algorithm, solution procedure is repeated five times. 

Summarized results for small size problem instances are presented in table 2, while results for 

larger instances are given in tables 3 and 4.  

In case of larger problem instances, number of tasks considered in an instance is given in 

column “n” of tables 3 and 4. Average time of an algorithm run is presented in column “T” of 

table 2, as well as in table 4, for larger problem instances. Table 2’s column “objective” 

contain values of the best objective values of instances ( bestf ), achieved over all instance runs 

for considered fleet size. Relative gap of an algorithm’s best result ( f ) from bestf  is given in 

column “Δobj”, for each algorithm. “Δobj” is calculated by expression (3). 

%100obj 



best

best

f

ff

 
(3) 

Table 3 contains only data about best solution found by appropriate procedure. However, 

because VNS outperformed Insertion heuristics for every problem instance, instead using 

“objective“ column, like in case of table 2, part of table 3 regarding VNS’s results contains 

values of the best solution’s objective function. Part of table 3’s results, regarding results of 

Insertion algorithm, contains values of relative gap to the solution of VNS, i.e. it contains 

information like in “Δobj” column of table 2.  Table 4 contains information about average 

time of algorithm runs for larger problem instances, like in “T” column of table 2.  

 

Tab.3 Values and gaps[%] of best achieved solutions 

 VNS Insertion 

n inst 2 5 10 2 5 10 

25 

1 928.77 165.99 132.68 4.43% 14.92% 0.84% 

2 967.03 177.73 137.57 2.46% 19.96% 2.30% 

3 1001.60 181.80 136.70 7.82% 30.86% 2.43% 

4 996.00 183.53 136.10 5.79% 16.21% 1.85% 

5 960.61 182.30 135.72 5.06% 20.12% 3.10% 

Average[%] 5.11% 20.41% 2.11% 

50 

1 3660.22 389.89 276.02 4.00% 44.68% 1.82% 

2 3461.11 343.03 271.03 1.57% 28.51% 2.57% 

3 3690.70 396.57 276.23 3.66% 41.99% 2.59% 

4 3727.83 424.44 273.24 4.01% 35.87% 2.60% 

5 3527.05 384.18 273.04 3.22% 33.16% 3.04% 

Average[%] 3.29% 36.84% 2.53% 

 

Tab.4 Average running times for large size instances [s] 

 VNS Insertion 

n inst 2 5 10 2 5 10 

25 

1 15.01 15.28 15.52 0.01 0.02 0.03 

2 19.20 13.70 9.49 0.02 0.02 0.02 

3 19.97 18.72 10.75 0.01 0.02 0.02 

4 17.98 17.46 11.98 0.02 0.01 0.02 

5 16.47 17.90 15.72 0.01 0.02 0.02 

Average 17.73 16.61 12.69 0.015 0.02 0.02 

50 
1 348.36 171.84 226.65 0.08 0.09 0.11 

2 313.21 250.41 176.39 0.08 0.08 0.11 
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3 385.83 192.77 171.64 0.08 0.08 0.11 

4 176.27 195.59 205.05 0.08 0.09 0.09 

5 344.38 267.43 183.60 0.08 0.09 0.11 

Average 313.61 215.61 192.67 0.08 0.09 0.1 

 
 6. CONCLUDING REMARKS 
 

From content of table 2 it can be noticed the influence parameter m, i.e. number of 

available unloading devices,  has on complexity of the DHDAP. Namely, as m increases 

complexity of the problem increases as well, so that B&B algorithm was not able neither once 

to solve problems with ten tasks to optimality for the cases when m was larger then two. 

However, beside larger solution space, increase of parameter m, i.e. increase of the number of 

devices in system, causes potential existence of multiple optimum solutions. Especially in 

cases when capacity of available devices exceeds required capacity and if there are several 

devices with the same relevant performances, meaning that mutual changes of devices leads 

to the same objective functions. Therefore, due to larger number of optimal solutions in 

solution space there is slight larger chance of finding it. According to that, improvement of 

Insertion’s results for the case of m=10 compared to other m values is not surprising.   

As it was expected, in cases of larger problem instances, VNS outperformed the Insertion 

heuristics in all problem instances. This performance indicates necessity of further research 

efforts in order to improve quality of obtained solutions, as well as to reduce running time of 

VNS.   

Since motivation for researching this problem originated from need of controlling system 

for unloading gravel from barges, intentions for future research are related to implementation 

of algorithms in such a system. That implies future research should be focused on additional 

increase of time efficiency of VNS algorithm, which might be achieved by consideration of 

additional neighborhood structures. Next direction for future research is related with testing 

efficiency of algorithms belonging to other classes of metaheuristic algorithms, for example 

genetic algorithms, ant colony optimization, bee colony optimization, particle swarm 

optimization etc. Finally, third direction for future researches related to DHDAP makes it 

closer to decisions made by dispatcher in real systems, because it includes inventory 

management within the problem formulation. Namely, in order to eliminate inventory 

shortages on unloading locations, dispatcher controlling a fleet of unloading devices makes 

device to task allocation decisions not only by respecting  unloading devices and barges 

related information, but also by respecting information related to inventory levels and 

consumption rates of unloading locations. By this kind of decision making, quality of service 

is increased, but on the other side obtaining of efficient solutions becomes more complicated. 
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