MODIFICATION OF WOOD BY ATMOSPHERIC DISCHARGE PLASMA

Ing. Igor Novák, PhD.1
Ing. Vladimír Vanko2
Ing. Jozef Prečo2
Prof. Ing. Ivan Chodák, DrSc.1
Ing. Anton Popelka1
Doc. Ing. Ján Sedliačik, PhD.3
Ing. Vladimír Pollák, PhD.1

1Polymer Institute, Slovak Academy of Sciences, Dúbravská cesta 9, 845 41 Bratislava, Slovakia
2VIPO, a.s., Gen. Slobodou 1069/4, 958 01 Partizánske, Slovakia
3Technical University in Zvolen, T. G. Masaryka, Zvolen, Slovakia
e-mail: upolnovi@savba.sk

Abstract
The atmospheric discharge plasma has been used to improve the wetting and adhesion properties of wood. The low-temperature plasma processes are attractive for wood industry applications because of their lower cost, and ability to operate in-line without vacuum systems. However, using the sessile droplet technique, we have identified a significant increase of polar component of surface free energy. Polar part of surface free energy is associated with the presence of acid/base forces (electron donor–acceptor bonds). The treatment of wood exhibited a substantial aging effect; nevertheless the treated surface never recovers to its initial hydrophobic state. The enhancement of wood wettability is a necessary condition to promote a better adhesion with a water-based adhesives and coatings, which is currently being studied.

Key words: surface modification, plasma discharge, contact angle

INTRODUCTION
The bonding of wood after electric discharge plasma surface modification is of considerable interest with the respect to construction of the strongest wood adhesive joints (1–3). Great efforts have been made in developing various kinds of furniture using plastic or wood veneers in adhesive joints wood-adhesive-veneer. The coplanar surface barrier plasma at atmospheric pressure is currently the most promising methods of surface modification, and are considered as the ‘green’ ecologically friendly modification method (4). For a common industrial wood application various woods have to possess a large set of various surface characteristics, including polarity (hydrophobicity or hydrophilicity), dyability, scratch resistance, tailored adhesive properties, antibacterial resistance etc. Nanoscale changes to the surface of wood materials enable the changes in materials surface, while maintaining the desirable bulk material properties.

EXPERIMENTAL

MATERIALS
Wood boards, wood particles (oak) (TU Zvolen, Slovakia), ChS Epoxy 510 (Czech Republic), testing liquids (water, ethylene glycol, formamide, diiodmethane, 1-bromnaphthalene, dichloromethane).

MODIFICATION METHOD
In this paper the modified wood filler/particles (d < 50 micrometer) were investigated using diffuse coplanar barrier surface discharge (DCSBD) plasma of selected wood kind (oak wood particles), for potential applicability in woodworking industry. The selected wood was modified by DCSBD plasma. There are two reasons why in the case of wood to apply plasma discharge modification. Firstly, plasma in air itself significantly increases hydrophilicity of the wood surface, because of formation various polar groups (e.g. hydroxyl, carbonyl, carboxyl, etc), and, the wood macromolecules are also cross-links (up to a few microns) what leads to the increase in scratch resistance and to the improvement in barrier properties of the wood material. Second reason for the plasma use is to increase adhesion in adhesive joint between wood particles in fiberboard material, or wood-wood and/or wood-polymer (e.g. polyvinylchloride, other plastic foils) for industrial applications due to growth of wood wettability.

Scheme 1 Source of DCSBD plasma for wood modification

Plasma modification was implemented in static conditions by DCSBD plasma technology (Fig. 1) of laboratory scale with oxygen as the gaseous medium at atmospheric pressure and room temperature. A schematic profile of the plasma system is given in Scheme 1. It basically comprises a series of parallel metallic electrodes inset inside a ceramic dielectric located in a glass chamber, which allows the carrier gases to flow. All samples were
treated on both sides with plasma power of 300 W. The improvement of hydrophilicity and/or hydrophobicity of the wood, its surface properties, the improvement of strength of adhesive joint of wood/wood composites with epoxy resin were studied for the determination of the appropriate structure of the plasma modified wood surfaces.

CONTACT ANGLES, SURFACE ENERGY
The surface energy of oak wood was determined using contact angles measurements with selected testing liquids set using SEE (Surface Energy Evaluation) device completed with a web camera (Advex, Czech Republic) and necessary PC software.

The drop of the testing liquid (V = 20 μl) was placed with a micropipette (Biohit, Finland) on the polymer surface, and a contact angle of the testing liquid was measured. The contact angle of wood surface was measured instantly after placing of the liquid drop.

The surface energies of wood were evaluated by Owens-Wendt-Rabel-Kaelble (OWRK) equation modified by the least squares method [1]:

\[
\frac{(1 + \cos \theta)}{2} \gamma_{LV} = (\gamma_{LV}^{d})^{1/2} + (\gamma_{LV}^{p})^{1/2}
\]

where
- \(\theta \) = contact angle of testing liquid (deg),
- \(\gamma_{LV} \) = surface energy of the testing liquid (mJ.m\(^{-2}\)),
- \(\gamma_{LV}^{d} \), \(\gamma_{LV}^{p} \) = dispersive component (DC), and polar component (PC) of surface energy of the testing liquid (mJ.m\(^{-2}\)),
- \(\gamma_{s} \) = DC, and PC of surface energy of the wood (mJ.m\(^{-2}\)).

RESULTS AND DISCUSSION

Fig. 1 shows the contact angle of re-distilled water deposited on oak wood surface modified by DCSBD plasma in oxygen vs. time of activation. The contact angle of water was measured immediately after deposition of the water drop. The contact angles of water decreased with time of the activation. The contact angles of water showed a steep decrease from 78\(^{\circ}\) to 45\(^{\circ}\) after short time of activation by DCSBD plasma (5 s). The changes of the contact angle were substantially lower for longer time of modification by plasma and this plot was levelled off. The decrease of the contact angles of polar testing liquids can be explained by an increase of the hydrophilicity of oak wood surface due to the treatment by DCSBD plasma in oxygen. The hydrophilicity of the surface depends on the formation of polar oxygenic functional groups on wood surface during the modification by oxygen plasma. After saturation of the polymer surface with polar groups the hydrophilicity was stabilized.

The surface properties of oak wood modified by DCSBD plasma in oxygen are illustrated in Fig. 2. The surface energy and its polar component of wood increased with time of activation. The surface energy of oak wood treated 5 s by DCSBD plasma in oxygen increased from 29 (pristine sample) to 52 mJ.m\(^{-2}\), and the polar component of the surface energy increased from 3.2 mJ.m\(^{-2}\) to 13.2 mJ.m\(^{-2}\). If the longer activation time was applied the plots in Figure 2 levelled off. This fact relates to saturation of wood surface with oxygen-containing functional groups due to modification by DCSBD plasma, and the changes in surface energy were very small when modification by plasma for more than 5 s was applied.

Fig. 3 represents the dependence of surface energy (plot a) and contact angle (plot b) of water of oak wood pre-treated by DSBD plasma in oxygen during ageing. According to Figure 3 the surface energy of wood decreased significantly from 68 to 46 mJ.m\(^{-2}\) after 5 s of modification by DCSBD plasma. The contact angle of oak wood
modified by plasma during ageing increased from 20° up to 48°. These changes relate to hydrophobic recovery of wood surface modified by plasma during ageing.

Fig. 4 shows the shear strength of adhesive joint oak wood modified by DCSBD plasma in oxygen−epoxy increases significantly with activation time from 1.6 up to 4.6 MPa.

Acknowledgement

This contribution is the result of the project implementation: "Re-engineering of the VIPO, a.s. product portfolio" (project code ITMS: 26220220091) supported by the Research & Development Operational Programme funded by the ERDF.

References:

