EXPERIMENTAL MEASURING OF CUTTING FORCES DURING DRILLING

Ing. Josef Sklenička
Department of Machining Technology
Faculty of Mechanical Engineering
University of West Bohemia
Univerzitní 22, 306 14 Plzeň
Czech Republic
e-mail: sklenick@kto.zcu.cz

Ing. Jan Kutlwašer
Department of Machine Design
Faculty of Mechanical Engineering
University of West Bohemia
Univerzitní 22, 306 14 Plzeň
Czech Republic
e-mail: kutlis@kks.zcu.cz

Abstract
The article is focused on measurement of cutting forces and a torque using equipment Department of machining technology. The measuring is conducted in drilling process using piezoelectric dynamometer. The measured data are evaluated in MATLAB environment using a specially created script. The main aim of experiment was to determined influence of the twist drill basic geometrical parameters on the cutting forces and the torque magnitude.

Key words: cutting force, dynamometer, geometrical parameter, drilling.

INTRODUCTION
Monitoring the whole cutting edge of a twist drill is not enough nowadays. The main cause is the variable magnitude of the tool geometry depending on the point of distance from the drill axis. It must be divided into single elements. More accurate information about the influence of the geometrical parameters on the load magnitude can be obtained by dividing the cutting edge. The cutting edge is divided into elements of identical size and they are essential for our experiments. The cutting elements have an exact position opposite the drill axis and have defined tool geometry. The load magnitude (thrust forces, passive forces and cutting torque) on the elements is monitored.
Furthermore, the supporting parameters are monitored to understand the cutting process. The supporting parameters are mainly the magnitude and shape of the chips, roughness of the machining surface, acoustic behaviour, etc [1].
A practical comparison of twist drills with the shape of the cutting edge and the line cutting edge is carried out in the practical part of the experiment. Twist drills are evaluated according to the shape of the chip and the feed force and torque magnitude [2,3].

DECOMPOSITION OF FORCES ON CUTTING ELEMENT
When we decomposed the cutting force on parts of the cutting edge (cutting elements) we found that the force magnitude on the element is strongly under the influence of the diameter location on the cutting edge. The element is marked as CE (cutting element). The CE is defined as the exact part of the cutting edge which has defined cutting geometry, location on the cutting edge and distance from the drill axis, Fig.1.

Fig. 1 Indexing of location CE

The experiments were created on the principle of drilling predrilled holes with testing drills (one predrilled hole is equal to one cutting element). The cutting edge is divided into single cutting elements using this principle. The magnitude and number of elements depend on the graduation of the drills which are used to prepare the workpiece.

Tab. 1 Relative values of measuring parameters

<table>
<thead>
<tr>
<th>Element</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Tc</td>
<td>[Nm]</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>[N]</td>
<td></td>
</tr>
<tr>
<td>B</td>
<td>Tc</td>
<td>[Nm]</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>[N]</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>A</th>
<th>Tc</th>
<th>8.04</th>
<th>7.81</th>
<th>7.68</th>
<th>7.11</th>
<th>6.50</th>
<th>5.80</th>
<th>5.07</th>
<th>4.27</th>
<th>3.37</th>
<th>2.52</th>
<th>1.48</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>[Nm]</td>
<td></td>
</tr>
<tr>
<td>B</td>
<td>Tc</td>
<td>9.10</td>
<td>8.61</td>
<td>8.27</td>
<td>8.03</td>
<td>7.32</td>
<td>6.38</td>
<td>5.48</td>
<td>4.70</td>
<td>3.97</td>
<td>2.84</td>
<td>1.69</td>
</tr>
<tr>
<td></td>
<td>[Nm]</td>
<td></td>
</tr>
</tbody>
</table>

14
Principle of force decomposition on CE

We get out from assumption that the cutting forces are decomposed on CE. We can decompose the resultant cutting force for the whole drill into the resultant cutting forces for the cutting elements.

They can be decomposed to a single component to the tangential, radial and axial direction. The tangential (cutting) component is replaced by the cutting torque which is measured and evaluated.

The measured data have a relative character only, because they do not describe directly the cutting force magnitude but only the magnitude of the cutting force for several elements. The absolute force magnitude for CE must be calculated from another equation (1).

\[F_{xi} = F_{xN_i} - F_{xN_{i+1}} \]

Where:
- \(F_{xi} \) is a random component of the resultant cutting force on the element \(i \) [N]
- \(F_{xN_i} \) is a randomly measured component of the resultant cutting force on element \(i \) [N]
- \(F_{xN_{i+1}} \) is a randomly measured component of the resultant cutting force on element \(i+1 \) [N]
- \(i \) is the serial number representing the size of the predrilled hole in mm (if \(i \) is equal to 0 the predrilled hole diameter equals 0 mm, if \(i \) is equal to \(n \) the value of force is equal to 0 N)

The validity condition for the previous relation is that the sum of all the elementary loads must be equal to the resultant load of the tool. Respectively the sum of all elementary components must be equal to the sum of all components for the resultant cutting force.

\[\sum_{i=1}^{n} F_{xi} = F_x \]

Where:
- \(F_x \) is a random component of the resultant cutting force [N]
- \(F_{xi} \) is a random component of the resultant cutting force on the element \(i \) [N]

MEASURING OF FORCES ON CUTTING ELEMENTS

Tested tools

Twist drills were selected for the experiments. The drills are 12 mm in diameter and they are made from sintered carbide deposited with a commercial thin layer. Two drills were used for the whole experiment. They have different geometrical parameters [3]. The first drill has a straight cutting edge and the second drill has a cutting edge shaped. The shapes of all the cutting edges are shown in Fig.2.

Tab. 2 Shape of the chips and absolute values of measuring parameters

<table>
<thead>
<tr>
<th>Element</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
</tr>
</thead>
<tbody>
<tr>
<td>Distance on cutting edge [mm]</td>
<td>0.5</td>
<td>1.25</td>
<td>1.75</td>
<td>2.25</td>
<td>2.75</td>
<td>3.25</td>
<td>3.75</td>
<td>4.25</td>
<td>4.75</td>
<td>5.25</td>
<td>5.75</td>
</tr>
<tr>
<td>Element size [mm]</td>
<td>1</td>
<td>0.5</td>
</tr>
<tr>
<td>A</td>
<td></td>
</tr>
<tr>
<td>Tc [Nm]</td>
<td>0.24</td>
<td>0.12</td>
<td>0.58</td>
<td>0.61</td>
<td>0.49</td>
<td>0.73</td>
<td>0.80</td>
<td>0.90</td>
<td>0.85</td>
<td>1.04</td>
<td>1.48</td>
</tr>
<tr>
<td>Ff [N]</td>
<td>362</td>
<td>108</td>
<td>96</td>
<td>131</td>
<td>94</td>
<td>72</td>
<td>65</td>
<td>68</td>
<td>55</td>
<td>55</td>
<td>53</td>
</tr>
<tr>
<td>B</td>
<td></td>
</tr>
<tr>
<td>Tc [Nm]</td>
<td>0.50</td>
<td>0.34</td>
<td>0.24</td>
<td>0.71</td>
<td>0.94</td>
<td>0.91</td>
<td>0.77</td>
<td>0.73</td>
<td>1.13</td>
<td>1.15</td>
<td>1.69</td>
</tr>
<tr>
<td>Ff [N]</td>
<td>611</td>
<td>229</td>
<td>62</td>
<td>140</td>
<td>107</td>
<td>104</td>
<td>86</td>
<td>93</td>
<td>89</td>
<td>93</td>
<td>99</td>
</tr>
</tbody>
</table>
EQUIPMENT USED FOR EXPERIMENTS

Department workshop laboratory equipment was used for the experiments. A four-component rotating Kistler 9132C dynamometer was used to record the force values. The dynamometer was joined to the measuring system which consists of an amplifier, connecting cables, connector block, measuring card and notebook. The notebook was equipped with LabView 8.2 measuring software. The thrust force and the passive force and the torque were obtained. The components of the measuring system are shown in Fig.3.

The tool geometry was measured using a Multi Check PC500 optical microscope. The parameters which we cannot measure using this equipment were measured in collaboration with Hofmeister, Co.. The tool wear check was carried out during the experiment using the Multi Check PC500 optical microscope.

SEQUENCE OF OPERATIONS IN THE EXPERIMENTS

The experiments were carried out as follows:
- measuring of the drills using the microscope (shape of cutting edge, mask for tool wear measuring, tool inclination angle)
- workpiece clamping by three-jaw chuck
- pre-drilling of pilot holes (one diameter for one workpiece)
- drilling of five holes using one of the tested tools (measuring the torque, the passive force and the thrust force)
- collecting and analyzing the chips
- changing the workpiece
- measuring the drills by microscope
The procedure was repeated until the whole range of the diameters was measured.

MEASURED DATA

The magnitude of the thrust force and the passive force and the torque were measured during machining. The data were recorded in a text file in the time sequence. The text file was evaluated using a script created in the Matlab environment. The table of relative cutting values was arranged for all variants of input parameters. These values are given in table 1.

PROCESSING OF EVALUATED FORCE AND TORQUE VALUES

The measured data are essential for finding the absolute magnitude of the measured values. The absolute magnitude of the forces and the torque was calculated using equation (1). The magnitude of the forces and the torque are shown in Fig.4 and 5.

CONCLUSIONS

The geometrical parameters were described on the cutting elements. The location of the cutting element has a dominant effect on the load of the cutting edge. A further parameter with a greater influence was the tool angle inclination. The thrust force magnitude rises and the torque magnitude decreases if the cutting element location is nearer to the tool axis, Fig.6 and 7. The shape of the cutting edge is also fully described.
The distance between the tool axis and the cutting element has a major influence on the cutting speed and the torque respectively. If the distance is bigger, the torque is also bigger and the thrust force is smaller. The change of the torque magnitude is non-linear although the cutting edge has a linear character. The cutting force decreases when the cutting speed is bigger.

Acknowledgment
This paper is based upon work sponsored by Student’s Competition Grant SGS-2011-026.

References: