

Bachelor and master theses topics for TUKE

Drive topics

- 1. Development of PMSM FOC based drive control unit/electronics capable of:
 - S1, S2, S3, S10 modes (extendable to others according to EN60034-1)
 - speed regulation, torque control, position control
 - Bus communication (Bus type will be provided by PMDM) for slave or P2P master/slave
 - embedded programming using C language
 - can be setup as a collaborative task
- 2. Multi-axis (multi-drive) system with central control unit
 - requires results from the topic 1
 - bus master functionality for internal motor network combined with slave node function towards external network
 - Multi-drive motion control
 - Multi-drive motion programming within the central control unit
 - embedded programming using C language
 - can be setup as a collaborative task

Test topics

- 3. Automated EMC testing concept
 - flowchart based test procedure input (i.e. using standard test blocks out of the test library)
 - automated test bench with changeable test setup
 - monitoring and logging of the results, upload into the database system
 - programming using scripting languages or NI LabView
 - can be setup as a collaborative task
- 4. Agile development in the multi-project test management
 - selection of the best suitable existing method (e.g. DSDM, Scrum, CCXP et cetera) for multi-project test management in the agile development
 - description of the proposed testing process including task planning, prioritising, progress control and task reporting
 - test run of the proposed method within the collaborative team
 - can be setup as a collaborative task

HW&SW topics

- 5. motor EMC vs commutation type effects analysis
 - comparison of the different commutation types regarding the best EMC result
 - current flank shapes testing and systematic effects analysis on EMC
 - influence of variable carrier/commutation frequency on EMC, applying frequency sweeping to the current
 - summarising and building of dependencies
- 6. motor acoustics vs commutation type effects analysis
 - comparison of the different commutation types regarding the best acoustic result (lowest possible noise)
 - current flank shapes testing and systematic effects analysis on acoustics
 - influence of variable carrier/commutation frequency on acoustics, applying frequency sweeping to the current
 - summarising and building of dependencies

Thank you!

