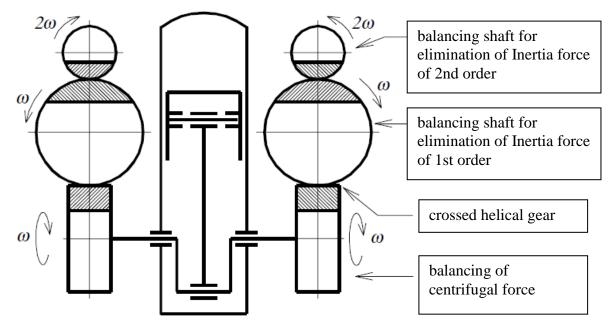


TECHNICAL UNIVERSITY OF KOŠICE Faculty of Mechanical Engineering AUTOMOBILE DESIGN


Part no: 6L

Lecturer: prof. Ing. Robert Grega, PhD.

Balancing of crank mechanism

We need balancing of inertia force and moment of inertia. Inertia force of 1st order. Inertia force of 2nd order.

Centrifugal force.

The Balancing goals: to reduce or eliminate the effects of inertial forces and their moments, which are manifested by oscillations, noise, fatigue, etc.

Balancing is possible:

- a suitable arrangement of the crank mechanism,
- centrifugal forces can be balanced by countermass,

- inertial forces can be balanced by balancing shafts

Balancing the inertial forces of the motion parts Balancing inertial forces of the first order:

$$F_{zpI} = m_A \cdot r \cdot \omega^2 \cdot \cos \alpha$$
$$F_{zpI} = F_{zpI0} \cdot \cos \alpha$$

F_{zpI0} - amplitude

The goal:

$$F_{zpIvýsl} = 0$$
$$\sum_{i=1}^{n} F_{zpIi} = 0$$

TECHNICAL UNIVERSITY OF KOŠICE Faculty of Mechanical Engineering AUTOMOBILE DESIGN

Part no: 6L

Lecturer: prof. Ing. Robert Grega, PhD.

when:

- i cylinder order position of cylinder
- n total number of crankshaft bends
- $\boldsymbol{\alpha}$ the angle of rotation of the first bend
- δi constant angles between the first bend of crankshaft to n-th bends

TECHNICAL UNIVERSITY OF KOŠICE Faculty of Mechanical Engineering

AUTOMOBILE DESIGN

Part no: 6L

Lecturer: prof. Ing. Robert Grega, PhD.

Inertial Forces I.st other:

$$F_{zpI0} \cdot \cos\alpha + F_{zpI0} \cdot \cos(\alpha + \delta_2) + F_{zpI0} \cdot \cos(\alpha + \delta_3) + \cdots + F_{zpI0} \cdot \cos(\alpha + \delta_n) = 0$$

substitution: $cos(\alpha + \delta) = cos\alpha. cos\delta - sin\alpha. sin\delta$

$$\begin{split} F_{zpI0}.\left[cos\alpha.\left(1+cos\delta_{2}+cos\delta_{3}+\cdots+cos\delta_{n}\right)-sin\alpha.\left(sin\delta_{2}\right.\\ \left.+sin\delta_{3}+\ldots+sin\delta_{n}\right)\right] &= 0 \end{split}$$

for original balancing by design of crankshaft:

$$1 + \cos\delta_2 + \cos\delta_3 + \dots + \cos\delta_n = 0$$

$$\sin\delta_2 + \sin\delta_3 + \dots + \sin\delta_n = 0$$

Balancing of inertial forces II.nd other:

$$F_{zpII} = m_A \cdot r \cdot \omega^2 \cdot \lambda \cdot \cos 2\alpha$$

$$F_{zpII} = F_{zpII0} \cdot \cos 2\alpha$$

 F_{zpII0} - amplitude The goal:

$$F_{zpIIvýsl} = 0$$
$$\sum_{i=1}^{n} F_{zpIIi} = 0$$

Inertial Forces II.nd other:

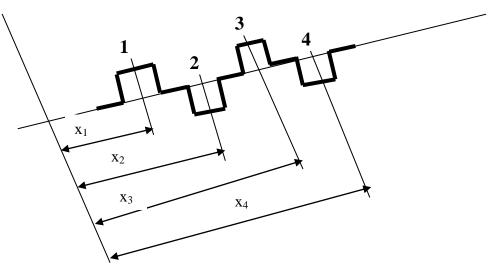
$$F_{zpII0} \cdot [\cos 2\alpha + \cos 2(\alpha + \delta_2) + \cos 2(\alpha + \delta_3) + \cdots + \cos 2(\alpha + \delta_n)] = 0$$

for original balancing by design of crankshaft:

$$1 + \cos 2\delta_2 + \cos 2\delta_3 + \dots + \cos 2\delta_n = 0$$

$$\sin 2\delta_2 + \sin 2\delta_3 + \dots + \sin 2\delta_n = 0$$

Balancing Inertia force of rotating parts: The goal:


$$F_{zprvýsl} = 0$$
$$\sum_{i=1}^{n} F_{zpri} = 0$$

TECHNICAL UNIVERSITY OF KOŠICE Faculty of Mechanical Engineering AUTOMOBILE DESIGN

Part no: 6L

Lecturer: prof. Ing. Robert Grega, PhD.

Moment balancing of an internal combustion engine

Balancing moments from motion inertial forces:

$$\begin{split} M_{zp} &= m_A.r.\,\omega^2.\left\{x_1.\left[\cos\alpha + \lambda.\cos2\alpha\right] + \cdots \\ &+ x_n.\left[(\cos\alpha + \delta_n) + \lambda.\cos2(\alpha + \delta_n)\right]\right\} \end{split}$$

after:

Balancing moments I.st other:

 $x_1 + x_2 \cdot \cos\delta_2 + x_3 \cdot \cos\delta_3 + \dots + x_n \cdot \cos\delta_n = 0$ $x_2 \cdot \sin\delta_2 + x_3 \cdot \sin\delta_3 + \dots + x_n \cdot \sin\delta_n = 0$

Balancing moments II.nd other:

$$x_1 + x_2 \cdot \cos 2\delta_2 + x_3 \cdot \cos 2\delta_3 + \dots + x_n \cdot \cos 2\delta_n = 0$$

$$x_2 \cdot \sin 2\delta_2 + x_3 \cdot \sin 2\delta_3 + \dots + x_n \cdot \sin 2\delta_n = 0$$

Balancing moments of rotating parts:

$$x_1 + x_2 \cdot \cos\delta_2 + x_3 \cdot \cos\delta_3 + \dots + x_n \cdot \cos\delta_n = 0$$

$$x_2 \cdot \sin\delta_2 + x_3 \cdot \sin\delta_3 + \dots + x_n \cdot \sin\delta_n = 0$$

Finally moment from motion and rotating parts:

$$\overline{M_{\nu \acute{y} sl}} = \overline{M_{zp}} + \overline{M_{zr}}$$

If the resultant moment is not "0", then the resultant moment must be balanced against the countermass and balancing shafts. The magnitude of the balancing moment will be:

$$\overline{-M_{v \circ s l}} = \overline{M_{v y v a \check{z}}}$$

TECHNICAL UNIVERSITY OF KOŠICE Faculty of Mechanical Engineering

AUTOMOBILE DESIGN

Lecturer: prof. Ing. Robert Grega, PhD.

Flywheel

During the working cycle in the cylinder, there is an acceleration of the shaft when there is an excess of energy and it slows down when there is a lack of energy. This difference can be expressed by the degree of uneven running.

$$\delta_s = \frac{\omega_{max} - \omega_{min}}{\omega_s}$$

or:

$$\delta_s = \frac{n_{max} - n_{min}}{n_s}$$

if:

$$\omega_s = \frac{\omega_{max} + \omega_{min}}{2}$$

or:

$$n_s = \frac{n_{max} + n_{min}}{2}$$

 n_{max} , n_{min} - maximum and minimum speed during the work cycle!

Recommended values for uneven engine running: automobile engines $\delta s = 1/180$ to 1/300aircraft engines $\delta s = 1/1000$

Energy change during uneven motion:

$$\Delta E_{k} = \frac{1}{2} . I. \left(\omega_{max}^{2} - \omega_{min}^{2} \right) = \frac{1}{2} . \left(I_{z} + I_{o} \right) . \left(\omega_{max}^{2} - \omega_{min}^{2} \right)$$

 I_z - inertia mass moment of the flywheel

 $I_{\rm o}$ - inertia mass moment other rotating parts

after:

$$\left(\omega_{max}^2 - \omega_{min}^2\right) = \frac{2.\,\Delta E_k}{(I_z + I_o)}$$

- uneven running can be influenced by $\Delta E_k \text{ or } I_z \text{+} I_o$

Part no: 6L


```
Part no: 6L
```

Lecturer: prof. Ing. Robert Grega, PhD.

The aim is to reduce the value of uneven running. A reduction of ΔE_k can be achieved by increasing the number by the engine cylinder. The change with $I_z + I_o$ means an increase in the mass moment of inertia of the engine (larger flywheel) - which has an adverse effect on the acceleration of the mass of the engine.

Define of inertia mass of flywheel:

$$\Delta E_k = \frac{1}{2} \cdot (I_o + I_z) \cdot (\omega_{max}^2 - \omega_{min}^2)$$
$$= (I_o + I_z) \cdot \frac{(\omega_{max} - \omega_{min}) \cdot (\omega_{max} + \omega_{min})}{2}$$
$$= (I_o + I_z) \cdot \delta_s \cdot \omega_s^2$$

$$I_z = \frac{\Delta E_k}{\delta_s \cdot \omega_s^2} - I_o$$

power of engine:

$$\Delta A = \int (M_k - M_{hn}).\,d\alpha$$

 $M_{\rm hn}$ - torque for driven devices

Then:

$$I_z = \frac{\Delta A}{\delta_s \cdot \omega_s^2} - I_o$$

Other factors taking into account the flywheel design:

- transients during regulation,
- time required to stop the engine,
- rigidity of the connection between the engine and the driven machine,
- special tasks.