The Technical University of Košice, Faculty of Mechanical Engineering

Course unit title: NUMERICAL METHODS

Course code: **23005207**

Study programme: Automotive Production

Mechanical Engineering

Study period: 2st year, WT 2024/2025

Faculty: Faculty of Mechanical Engineering

Level of study: Bachelor Form of study: Full time

Evaluation: Graded credit test

Number of credits: 2

Guaranteeing department: DEPARTMENT OF APPLIED MATHEMATICS AND INFORMATICS

Guarantor: prof. RNDr. Martin BAČA, CSc.

Week	Lectures	Tutorials	
	Number of hours: 0 per week	Number of hours: 2 per week	
1.		Introduction to numerical methods.	
2.		Graphical solution of equation $f(x) = 0$. The halving method.	
3.		Method of chords. Newton's method. The method of iteration.	
4.		Solving systems of linear equations. The method of iteration. The Seidel method.	
5.		Lagrange's interpolation formula. Lagrangian coefficients. Newton's interpolation formula. Inverse interpolation.	
6.		Approximation of functions. The least squares method. Linear approximation.	
7.		Test.	
8.		The least squares method. Non-linear approximations.	
9.		The trapezoidal formula.	
10.		Simpson's formula. Richardson extrapolation.	
11.		Numerical methods for approximating the solution to differential equations. Euler's method.	
12.		The fourth order Runge-Kutta method to solve differential equations.	
13.		Test.	

Recommended reading:

- 1. Chapra, S., Canale, R.: Numerical methods for engineers, McGraw-Hill, 2010.
- 2. Yang, X.S.: Introduction to computational mathematics, World Scientific, 2008.
- 3. Strang, G.: Computational science and engineering, Wiley, 2007.
- 4. Pav, S.E.: Numerical methods course notes, University of California at San Diego, 2005.
- 5. Hämmerlin, G., Hoffmann, K.H.: Numerical mathematics, Springer-Verlag, New York, 1991.

Evaluation:

EVALUATION

1st test:	40 points
2nd test:	40 points
Homework assignments:	20 points
Graded credit test:	total points 100, required minimum 51

The necessary condition for obtaining a course credit is to write down homework assignments.

Attendance of classes is compulsory.

Košice,	18th	Septem	ber,	2024
---------	------	--------	------	------