Course unit title:	MATHEMATICS III.
Study programme:	Automotive Production
	Industrial Mechatronics
	Mechanical Engineering
Study period:	2st year, WT 2020/2021
Faculty:	Faculty of Mechanical Engineering
Level of study:	Bachelor
Form of study:	Full time
Evaluation:	Course credit, Exam
Number of credits:	6
Cuarantaging department:	DEDADTMENT OF ADDITED MA

Guaranteeing department:DEPARTMENT OF APPLIED MATHEMATICS AND INFORMATICSGuarantor:prof. RNDr. Martin BAČA, CSc.

Week	Lectures	Tutorials
Week	Number of hours: 2 per week	Number of hours: 2 per week
1.	Definition of double integral. Properties of do- uble integrals. Iterated integrals.	Double integral.
2.	Transformation in double integrals. Polar coordinates. Generalized polar coordinates. Applications of double integrals.	Transformation in double integrals.
3.	Triple integral. Transformation in triple integ- rals. Applications of double integrals.	Triple integral. Transformation in triple integrals.
4.	Line integrals of scalar functions.	Line integrals of scalar functions.
5.	Line integrals of vector fields. Green's the- orem. Conservative vector fields.	Line integrals of vector fields.
6.	The applications of the line integral. The numerical infinite series.	Green's theorem. The applications of the line integral.
7.	Special types of series. Tests for convergence of series.	The numerical infinite series. Tests for conver- gence of series.
8.	Alternating series. Absolute convergence.	Mid-term test. Alternating series.
9.	Functional series. Power series.	Power series.
10.	Taylor series. Applications of power series.	Taylor series.
11.	Fourier series. Orthogonal functions.	Solutions of differential equations using by in- finite series.
12.	Fourier series of periodic functions. Convergence of Fourier series.	Fourier series of periodic functions.
13.	Fourier series of non-periodic functions.	Fourier series of non-periodic functions.

Recommended reading:

- 1. Bača, M., Feňovčíková, A., Kimáková, Z.: Mathematics 3, TU Košice, 2016.
- 2. Downing, D.: Calculus, Barron's Educational Series, Inc., New York, 2006.
- 3. Small, D.B., Hosack, J.M.: Calculus An Integrated Approach, McGraw-Hill Series in Higher Mathematics, 1990.
- 4. Doboš, J., Záskalická, M.: Zbierka úloh z matematiky III, Elfa, Košice, 2002. (in Slovak).
- 5. Eliáš, J., Horváth, J., Kajan, J.: Zbierka úloh z vyššej matematiky 3. časť, Alfa, Bratislava, 1995. (in Slovak).
- 6. Knežo, D., Andrejiová, M., Kimáková, Z.: Matematika 2, Technická univerzita, Košice, 2010. (in Slovak).

Prerequisites: Mathematics II.

Evaluation:

CONTINUOUS EVALUATION

Mid-term test:	20 points
Course credit:	total points 20 (required minimum 11)

The necessary condition for obtaining a course credit is to write down homework assignments.

FINAL EVALUATION – EXAM

Computational part:	50 points
Theoretical part:	30 points
T o t a l:	total points 80 (required minimum 41)

Attendance of lectures and classes is compulsory.

Košice, 18th September, 2020