The Technical University of Košice, Faculty of Mechanical Engineering

Course unit title: NUMERICAL METHODS
Study programme: Automotive Production
Mechanical Engineering

2st year, WT 2019/2020

Faculty: Faculty of Mechanical Engineering

Level of study: Bachelor Form of study: Full time

Evaluation: Graded credit test

Number of credits: 2

Study period:

Guaranteeing department: DEPARTMENT OF APPLIED MATHEMATICS AND INFORMATICS

Guarantor: prof. RNDr. Martin BAČA, CSc.

Week	Lectures	Tutorials		
	Number of hours: 2 per week	Number of hours: 2 per week		
1.	Introduction to numerical methods.	Introduction to numerical methods.		
2.	Approximate solutions of algebraic and transcendental equations. Graphical solution of equation $f(x) = 0$. The halving method.	Graphical solution of equation $f(x) = 0$. The halving method.		
3.	Numerical methods of approximate solution of equation $f(x) = 0$. Method of chords. Newton's method. The method of iteration.	Method of chords. Newton's method. The method of iteration.		
4.	Solving systems of linear equations. The method of iteration. The Seidel method.	Solving systems of linear equations. The method of iteration. The Seidel method.		
5.	The interpolation of functions.	Lagrange's interpolation formula. Lagrangian coefficients. Newton's interpolation formula. Inverse interpolation.		
6.	Approximation of functions. The least squares method. Linear approximation.	Approximation of functions. The least squares method. Linear approximation.		
7.	The least squares method. Non-linear approximations.	Test.		
8.	Approximate integration of functions. The trapezoidal formula and its remainder term.	The least squares method. Non-linear approximations.		
9.	Simpson's formula and its remainder term.	The trapezoidal formula.		
10.	Approximate integration of functions. Richardson extrapolation.	Simpson's formula. Richardson extrapolation.		
11.		Numerical methods for approximating the solution to differential equations. Euler's method.		
12.	The fourth order Runge-Kutta method to solve differential equations.	The fourth order Runge-Kutta method to solve differential equations.		
13.	Numerical methods to solve systems of differential equations. Runge-Kutta method for systems of differential equations.	Test.		

Recommended reading:

- 1. Chapra, S., Canale, R.: Numerical methods for engineers, McGraw-Hill, 2010.
- 2. Yang, X.S.: Introduction to computational mathematics. World Scientific, 2008.
- 3. Strang, G.: Computational science and engineering. Wiley, 2007.
- 4. Pav, S.E.: Numerical methods course notes, University of California at San Diego, 2005.
- 5. Hämmerlin, G., Hoffmann, K.H.: Numerical mathematics, Springer-Verlag, New York, 1991.

Evaluation:

EVALUATION

1st test:	40 points
2nd test:	40 points
Homework assignments:	20 points
Graded credit test:	total points 100, required minimum 51

The necessary condition for obtaining a course credit is to write down homework assignments.

Attendance of lectures and classes is compulsory.

Košice,	20th	Septem	ber,	2019
---------	------	--------	------	------