Course unit title:	APLLIED MATHEMATICS
Study programme:	Mechanical Engineering
	Mechatronics
Study period:	1st year, ST 2019/2020
Faculty:	Faculty of Mechanical Engineering
Level of study:	Master
Form of study:	Full time
Evaluation:	Course credit, Exam
Number of credits:	5

Guaranteeing department: Guarantor:

DEPARTMENT OF APPLIED MATHEMATICS AND INFORMATICS prof. RNDr. Martin BAČA, CSc.

Week	Lectures	Tutorials
	Number of hours: 3 per week	Number of hours: 2 per week
1.	Complex numbers.	Complex numbers.
2.	Matrices, determinants.	Matrices, determinants.
3.	System of linear equations.	System of linear equations.
4.	Iterative methods solving system of linear equations.	Iterative methods solving system of linear equations.
5.	Eigenvalues and eigenvectors.	Eigenvalues and eigenvectors.
6.	General description of operations research. In- troduction to linear programming.	Linear programming models.
7.	Linear programming models and solutions.	Graphical approach to solving linear program- ming models.
8.	Simplex method, simplex tableau, standard simplex method.	Simplex method, simplex tableau, standard simplex method.
9.	Duality in linear programming, economic in- terpretation.	Mid-term test.
10.	Dual simplex algorithm.	Duality in linear programming. Dual simplex algorithm.
11.	Ordinary differential equations. Boundary va- lue problems.	Boundary value problems for ordinary differential equations.
12.	Calculus of variations.	Variational problems.
13.	Variational problems.	Applications of variational problems.

Recommended reading:

- 1. Bača, M., Feňovčíková, A.: Mathematics 1, C-PRESS, Košice, 2010.
- 2. Bača, M., Feňovčíková, A.: Mathematics 2, C-PRESS, Košice, 2010.
- 3. Burden, R. L., Faires, J. D.: Numerical Methods, Brooks/Cole, Boston, 2012.
- 4. Downing, D.: Calculus, Barron's Educational Series, Inc., New York, 2006.
- 5. Elsgolc, L. E.: Calculus of Variations, Dover Publications, Mineola, New York, 2007.
- 6. Chapra, S., Camale, R.: Numerical Methods for Engineers, McGraw-Hill, 2010.
- 7. Vanderbei, R. J.: Linear programming: Foundation and Extensions, 4th edition, English, 2013.

Evaluation:

CONTINUOUS EVALUATION

Mid-term test:	20 points
Course credit:	total points 20 (required minimum 11)

The necessary condition for obtaining a course credit is to write down homework assignments.

FINAL EVALUATION – EXAM

Computational part:	50 points
Theoretical part:	30 points
T o t a l:	total points 80 (required minimum 41)

Attendance of lectures and classes is compulsory.

Košice, 7th February, 2020

Signature of guarantee