Course unit title:	MATHEMATICS II.
Study programme:	Mechanical Engineering
Study period:	1st year, ST 2017/2018
Faculty:	Faculty of Mechanical Engineering
Level of study:	Bachelor
Form of study:	Full time
Evaluation:	Course credit, Exam
Number of credits:	6
Guaranteeing department:	DEPARTMENT OF APPLIED MA

Guarantor:

Guaranteeing department: DEPARTMENT OF APPLIED MATHEMATICS AND INFORMATICS prof. RNDr. Martin BAČA, CSc.

Week	Lectures	Tutorials
WEEK	Number of hours: 2 per week	Number of hours: 2 per week
1.	Definition of the definite integral. Properties of the definite integral. The fundamental the- orem of calculus. Definite integral with va- riable upper limit.	The fundamental theorem of calculus. Definite integral with variable upper limit.
2.	Substitution in definite integral. Integration by parts for definite integral.	Substitution in definite integral. Integration by parts for definite integral.
3.	Applications of definite integral.	Area in the plane. Volume of revolution. Length of plane curve. The area of a surface of revolution.
4.	Improper integral.	Improper integral of type 1. Improper integral of type 2.
5.	Functions of several variables. Limits and con- tinuity. Partial derivatives. Higher order deri- vatives.	Functions of two or more independent variab- les. Partial derivatives. Higher order derivati- ves.
6.	Tangent planes and normal lines. Total differential. Maxima and minima.	Tangent planes and normal lines. Total differential. Maxima and minima.
7.	Ordinary differential equations. Separable equations. Homogeneous equations.	Separable equations. Homogeneous equations.
8.	Exact equations. Integrating factors.	<i>Mid-term test.</i> Exact equations. Integrating factors.
9.	First order linear equations. Bernoulli differential equations.	First order linear equations. Bernoulli differential equations.
10.	Higher order linear equations. Linear equations with constant coefficients – homogeneous.	Higher order linear equations. Linear equations with constant coefficients – homogeneous.
11.	Linear equations with constant coefficients – non-homogeneous.	Linear equations with constant coefficients – non-homogeneous.
12.	Linear differential systems. Homogeneous linear systems with constant coefficients.	Homogeneous linear systems with constant co- efficients.
13.	Non-homogeneous linear systems with cons- tant coefficients.	Non-homogeneous linear systems with cons- tant coefficients.

Recommended reading:

- 1. Bača, M., Feňovčíková, A.: Mathematics 2, C-PRESS, Košice, 2010.
- 2. Knežo, D., Andrejiová, M., Kimáková, Z.: Matematika 1, Časť B: Neurčitý integrál, algebra, analytická geometria, Technická univerzita, Košice, 2010 (in Slovak).
- 3. Knežo, D., Andrejiová, M., Kimáková, Z.: Matematika 2, Technická univerzita, Košice, 2010 (in Slovak).
- 4. Strang, G.: Calculus, Wellesley-Cambridge Press, 1991.
- 5. Thomas, G.B., Finney, R.L.: Calculus and Analytic Geometry, Addison-Wesley Publishing Company, New York, 1990.

Evaluation:

CONTINUOUS EVALUATION

Mid-term test:	20 points
Course credit:	total points 20 (required minimum 11)

The necessary condition for obtaining a course credit is to write down homework assignments.

FINAL EVALUATION – EXAM

Computational part:	50 points
Theoretical part:	30 points
T o t a l:	total points 80 (required minimum 41)

Attendance of lectures and classes is strongly recommended.

Košice, 5th February, 2018

Signature of guarantee